目的 探讨葛根素对臂丛神经根性撕脱伤(brachial plexus root avulsion injury,BPRAI)脊髓前角iNOS、CGRP蛋白表达及PI3K/Akt信号通路的影响。 方法 将50只雄性SD大鼠随机分为正常组、模型组、葛根素低、中、高剂量治疗组,每组10只。模型组,葛根素低、中、高剂量治疗组进行BPRAI造模,撕脱大鼠右侧C5~7脊神经前根,后根剪断,术后3个治疗组予腹腔注射葛根素,剂量分别为50、100、200 mg·kg-1·d-1,正常组、模型组腹腔注射等体积生理盐水,持续4周。采用尼氏染色、免疫荧光化学、Western blot方法,观察损伤侧脊髓前角α运动神经元(alpha motorneurons,α-MNs)的存活率,iNOS、CGRP、PI3K/Akt通路相关蛋白的表达。 结果 第4周时,低、中、高剂量的葛根素治疗可抑制α-MNs丢失(P<0.05或P<0.01);中、高剂量的葛根素治疗可抑制iNOS表达(P<0.05);高剂量的葛根素治疗可促进CGRP蛋白表达(P<0.05或P<0.01);低、中、高剂量葛根素均可显著抑制p-Akt1/2/3表达(P<0.01)。 结论 葛根素可改善BPRAI造模引起的α-MNs死亡,其机制可能与葛根素能抑制iNOS蛋白的表达、促进CGRP蛋白的表达有关,并且PI3K/Akt信号通路参与其调控。
Abstract
Objective To investigate the effect of Puerarin on the expression of iNOS, CGRP and PI3K/Akt signaling pathway in spinal anterior horn following brachial plexus root avulsion injury (BPRAI). Methods Fifty SD rats were randomly divided into a normal group, a model group, a low-dose group, a middle-dose group and a high-dose group with 10 rats in each group. BPRAI modeling was made in the model group, low-dose group, middle-dose group and high-dose group by avulsing the anterior roots and transecting posterior roots of right C5~7 segment of spinal nerve. Puerarin was injected intraperitoneally in the low-dose group, middle-dose group and high-dose group after the operation at doses of 50, 100 and 200 mg·kg-1·d-1 respectively. The normal group and model group were given intraperitoneal injection of saline of equal volume for 4 weeks. Nissl staining, immunofluorescence and Western blot were used to observe the survival rate, the expression of iNOS and CGRP of alpha motorneurons (α-MNs), and PI3K/Akt pathway related proteins in the spinal cord on the injured side. Results At the 4th week, low, middle and high doses of Puerarin could inhibit the loss of α-MNs (P<0.05 or P<0.01); middle and high doses of Puerarin could inhibit the expression of iNOS (P<0.05); high doses of Puerarin could significantly promote the expression of CGRP protein (P<0.05 or P<0.01); low, middle and high doses of Puerarin could significantly inhibit the expression of p-Akt1/2/3 (P<0.01). Conclusions Puerarin can ameliorate the death of alpha-MNs induced by BPRAI. The protective effect of Puerarin may be related to its inhibition of iNOS expression and promotion of CGRP expression, and PI3K/Akt signaling pathway is involved in its regulation.
关键词
葛根素 /
臂丛神经损伤 /
α运动神经元 /
iNOS /
CGRP /
PI3K/Akt
Key words
Puerarin;  /
Brachial plexus root injury;  /
Alpha motorneurons;  /
iNOS;  /
CGRP;  /
PI3K/Akt
中图分类号:
 
R745.41 
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Annika J, Paul U, Anna-Lena L. Obstetric brachial plexus palsy-a prospective, population-based study of incidence, recovery and long-term residual impairment at 10 to 12 years of age[J]. Eur J Paediatr Neurol, 2019, 23(1): 87-93.
[2] Karsy M, Watkins R, Jensen MR, et al. Trends and cost analysis of upper extremity nerve injury using the national (nationwide) inpatient sample[J]. World Neurosurg, 2019, 123: e488-e500.
[3] Baltzer H, Woo A, Oh C, et al. Comparison of ulnar intrinsic function following supercharge end-to-side anterior interosseous-to-ulnar motor nerve transfer: a matched cohort study of proximal ulnar nerve injury patients[J]. Plast Reconstr Surg, 2016, 138(6): 1264-1272.
[4] 王雨, 王文晟, 陈龙菊. 臂丛神经根性撕脱损伤后微环境变化的研究进展[J]. 中国临床解剖学杂志, 2018, 36(5): 596-599.
[5] Hart AM, Terenghi G, Wiberg M. Neuronal death after peripheral nerve injury and experimental strategies for neuroprotection[J]. Neurol Res, 2008, 30(10): 999-1011.
[6] Fang XY, Zhang WM, Zhang CF, et al. Lithium accelerates functional motor recovery by improving remyelination of regenerating axons following ventral root avulsion and reimplantation[J]. Neuroscience, 2016, 329: 213-225.
[7] Fu R, Tang Y, Ling ZM, et al. Lithium enhances survival and regrowth of spinal motoneurons after ventral root avulsion[J]. BMC Neurosci, 2014, 15: 84.
[8] Noguchi T, Ohta S, Kakinoki R, et al. A new cervical nerve root avulsion model using a posterior extra-vertebral approach in rats[J]. J Brachial Plex Peripher Nerve Inj, 2013, 8(1): 8.
[9] Menticoglou S. Shoulder dystocia: incidence, mechanisms, and management strategies[J]. Int J Womens Health, 2018, 10: 723-732.
[10] Barman A, Chatterjee A, Prakash H, et al. Traumatic brachial plexus injury: electrodiagnostic findings from 111 patients in a tertiary care hospital in India[J]. Injury, 2012, 43(11): 1943-1948.
[11] Smania N, Berto G, La Marchina E, et al. Rehabilitation of brachial plexus injuries in adults and children[J]. Eur J Phys Rehabil Med, 2012, 48(3): 483-506.
[12] James ND, Angéria M, Bradbury EJ, et al. Structural and functional substitution of deleted primary sensory neurons by new growth from intrinsic spinal cord nerve cells: an alternative concept in reconstruction of spinal cord circuits[J]. Front Neurol, 2017, 8: 358.
[13] Chew DJ, Carlstedt T, Shortland PJ. A comparative histological analysis of two models of nerve root avulsion injury in the adult rat[J]. Neuropathol Appl Neurobiol, 2011, 37(6): 613-632.
[14] Tang Y, Fu R, Ling ZM, et al. MiR-137-3p rescue motoneuron death by targeting calpain-2[J]. Nitric Oxide, 2018, 74: 74-85.
[15] Spejo AB, Oliveira AL. Synaptic rearrangement following axonal injury: old and new players[J]. Neuropharmacology, 2015, 96(Pt A): 113-123.
[16] Tang Y, Ling ZM, Fu R, et al. Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs contralateral changes[J]. BMC Neurosci, 2014, 15: 92.
[17] Jing W, Jabbari B, Vaziri ND . Uremia induces upregulation of cerebral tissue oxidative/inflammatory cascade, down-regulation of Nrf2 pathway and disruption of blood brain barrier[J]. Am J Transl Res, 2018, 10(7): 2137-2147.
[18] Cheng X, Liu FL, Zhang J, et al. EGb761 protects motoneurons against avulsion-induced oxidative stress in rats[J]. J Brachial Plex Peripher Nerve Inj, 2010, 5: 12.
[19] Tan M, Yuan MZ, Sun TY, et al. Identification of the avulsion-injured spinal motoneurons[J]. J Mol Neurosci, 2015, 57(1): 142-151.
[20] Wiberg R, Kingham PJ, Novikova LN. A morphological and molecular characterization of the spinal cord after ventral root avulsion or distal peripheral nerve axotomy injuries in adult rats[J]. J Neurotrauma, 2017, 34(3): 652-660.
[21] Penas C, Casas C, Robert I, et al. Cytoskeletal and activity-related changes in spinal motoneurons after root avulsion[J]. J Neurotrauma, 2009, 26(5): 763-779.
[22] Chen LJ, Zhang FG, Li J, et al. Expression of calcitonin gene-related peptide in anterior and posterior horns of the spinal cord after brachial plexus injury[J]. J Clin Neurosci, 2010, 17(1): 87-91.
[23] Ratliff WA, Saykally JN, Kane MJ, et al. Neuromuscular junction morphology and gene dysregulation in the wobbler model of spinal neurodegeneration[J]. J Mol Neurosci, 2018, 66(1): 114-120.
[24] Xie W, Yang SY, Zhang Q, et al. Knockdown of microRNA-21 promotes neurological recovery after acute spinal cord injury[J]. Neurochem Res, 2018, 43(8): 1641-1649.
基金
国家自然科学基金(81260192);湖北民族大学博士科研项目(MY2018B026)