目的 设计个性化喙锁韧带重建导向器,并评价其钻孔精度和效率。 方法 使用计算机辅助设计软件设计个性化喙锁韧带重建导向器,并进行3D打印。获取90侧肩关节标本,随机平均分为3组,分别在微创双切口下使用徒手法和C臂导向器、个性化导向器引导法进行锁骨-喙突钻孔。测量手术时间、喙突骨隧道分区和喙突骨隧道至喙突内、外侧缘距离。 结果 徒手组、C臂导向器组、个性化导向器组的手术时间分别为(203±33)、(267±62)、(155±14) s。3组分别有13、28、30个喙突骨隧道位于理想中间区。使用3种方法建立的喙突骨隧道与喙突内、外侧缘距离差分别为(3.7±2.0)、(2.0±0.9)、(0.9±0.5) mm。差异均有统计学意义(P<0.05)。 结论 个性化导向器具有更高的钻孔精度和效率,为微创下辅助锁骨-喙突钻孔提供了新的选择。
Abstract
Objective To design a personalized guide device for coracoclavicular ligament reconstruction and to evaluate its drilling accuracy and efficiency. Methods A personalized guide device for coracoclavicular ligament reconstruction was designed by using computer-aided design software and 3D printing. Ninety human shoulder specimens were obtained and randomly assigned into free-hand, C-ring and personalized groups for transclavicular-transcoracoid drilling with minimally invasive incisions. The surgical duration, the tunnel location zones and distances from the tunnel edge to the coracoid’s medial and lateral edges were measured. Results The surgical duration in the freehand group, the C-ring group and the personalized group were (203±33) s, (267±62) s, and (155±14) s, respectively. There were 13, 28 and 30 coracoid tunnels of the three groups located in the ideal middle zone, respectively. The absolute differences between distances from the tunnel edge to the coracoid’s medial and lateral edges in the three groups were (3.7±2.0) mm, (2.0±0.9) mm, and (0.9±0.5) mm, respectively. The differences were all statistically significant. Conclusion The personalized guide device achieved higher drilling accuracy and efficiency, which is a new choice for transclavicular-transcoracoid drilling in coracoclavicular ligament reconstruction with minimally invasive incisions.
关键词
肩锁关节脱位 /
喙锁韧带重建术 /
钻孔导向器 /
计算机辅助设计 /
3D打印
Key words
Acromioclavicular joint dislocation /
Coracoclavicular ligament reconstruction /
Guide device /
Computer aided design /
3D printing
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Campbell ST, Heckmann ND, Shin S, et al. Biomechanical evaluation of coracoid tunnel size and location for coracoclavicular ligament reconstruction[J]. Arthroscopy, 2015, 31(5):825-830.
[2] 潘昭勋,杜德凯,张洪鑫,等. 三种Endobutton术式重建喙锁韧带术后稳定性的生物力学对比研究[J]. 中国临床解剖学杂志, 2017, 35(1):74-77.
[3] 张亚弟,庄云强,姜刚强,等. 锁骨钩钢板治疗Rockwood Ⅲ-Ⅵ型肩锁关节脱位[J]. 世界最新医学信息文摘, 2018, 18(40):81.
[4] 王登峰,王涛,康汇. 肩锁关节脱位治疗的研究进展[J]. 中华创伤杂志, 2018, 34(12):1101-1108.
[5] Schliemann B, Roßlenbroich S B, Schneider K N, et al. Why does minimally invasive coracoclavicular ligament reconstruction using a flip button repair technique fail? An analysis of risk factors and complications[J]. Knee Surg Sports Traumatol Arthrosc, 2015, 23(5):1419-1425.
[6] Walz L, Salzmann GM, Fabbro T, et al. The anatomic reconstruction of acromioclavicular joint dislocations using 2 TightRope devices[J]. Am J Sports Med, 2017, 36(12):2398-2406.
[7] Xue C, Song L, Li X, et al. Coracoclavicular ligaments anatomical reconstruction: a feasibility study[J]. Int J Med Robot, 2015, 11(2):181-187.
[8] 彭亮权,朱伟民,欧阳侃,等. 关节镜下TightRope绊钢板治疗肩锁关节脱位[J]. 中国临床解剖学杂志, 2012, 30(4):459-461.
[9] Hoffmann M, Schroeder M, Hartel M, et al. Accuracy analysis of a novel electromagnetic navigation procedure versus a standard minimally invasive method for arthroscopically assisted acromioclavicular joint reconstructions[J]. Arthroscopy, 2014, 30(8):928-935.
[10]Theopold J, Weihs K, Löffler S, et al. Image-free navigated coracoclavicular drilling for the repair of acromioclavicular joint dislocation: a cadaver study[J]. Arch Orthop Trauma Surg, 2015, 135(8):1077-1082.
[11] 李鉴轶,游辅宇,孔祥雪,等. 一种新型喙锁韧带重建导向器及其钻孔精度评价[J]. 中国骨科临床与基础研究杂志, 2015,7(5):285-289.
[12] 赵立连,卢明峰,许挺,等. 关节镜下双Endobutton钮扣钢板内固定治疗急性肩锁关节脱位[J]. 中华创伤杂志, 2019, 35(1):71-78.
[13] 杨凯,潘朝晖,王伟,等. TightRope装置和锁骨钩钢板治疗RockwoodⅢ型急性肩锁关节脱位的疗效对比分析[J]. 中国临床医生杂志, 2017, 45(6):85-87.
基金
国家自然科学基金(31771330),国家重点研发计划(2017YFC0110602),广东省科技计划项目(2015B010125006,2015B010125005),广州市科技计划项目(201704020129,201704020069)