全腰椎非线性有限元模型的建立与有效性验证

凌钦杰,林晖,谢普生,邓羽平,黄文华

中国临床解剖学杂志 ›› 2018, Vol. 36 ›› Issue (6) : 662-667.

中国临床解剖学杂志 ›› 2018, Vol. 36 ›› Issue (6) : 662-667. DOI: 10.13418/j.issn.1001-165x.2018.06.013
临床生物力学

全腰椎非线性有限元模型的建立与有效性验证

  • 凌钦杰1, 2, 林晖2, 谢普生2, 邓羽平2, 黄文华2
作者信息 +

Development and validation of nonlinear finite element model of the whole lumbar spine

  • LING Qin-jie 1, 2, LIN Hui 2, XIE Pu-sheng 2, DENG Yu-ping 2, HUANG Wen-hua 2
Author information +
文章历史 +

摘要

目的 为人体腰椎生物力学有限元分析建立有效的全腰椎非线性数字仿真模型。  方法 采集一名25岁的健康男性腰椎(L1~5)CT影像数据,依次通过Mimics 17.0、Geomagic Studio 2013、UG8.5、Hypermesh 13.0、Abaqus6.14-4五个软件建立模型,赋予各组织对应的属性。首先进行网格收敛性测试,选取合适的网格划分方案以提高分析效率。然后通过给模型施加不同的力矩载荷来模拟腰椎的6种运动(前屈、后伸、左侧弯、右侧弯、左轴向旋转、右轴向旋转),计算腰椎各功能节段(functional spinal unit,FSU)的活动度(range of motion,ROM)。  结果 模型得出的结果与体外试验的数据类似,两者变化趋势规律一致。  结论 本研究使用的全腰椎非线性有限元模型的建立与验证方法可用于未来脊柱相关疾病的建模与分析。

Abstract

Objective  To develop the whole lumbar spine finite element model and to validate the model by comparison with the previous vitro experiments. results. Methods The CT images of the whole lumbar spine were from a 25 years old male volunteer. The finite element model was established by six software: Mimics 17.0, Geomagic Studio 2013, UG8.5, Hypermesh 13.0 and Abaqus 6.14-4. After finishing a grid convergence test, six lumbar movements (flexion, extension, left bending, right bending, left axial rotation, right axial rotation) were simulated by applying different moment loads to the model. Then the range of motion (ROM) of each lumbar spine functional spinal unit (FSU) was recorded. Results The simulating results obtained by the model were similar to those obtained from the in-vitro experiments, and the trend of the two was consistent. Conclusions The establishment and validation of the nonlinear finite element model of the whole lumbar spine used in this study can be used to model and analyze future spine-related diseases.

关键词

腰椎 /  生物力学 /  有限元分析 /  非线性

Key words

Lumbar spine /  Biomechanics /  Finite element analysis /  Nonlinear Model

引用本文

导出引用
凌钦杰,林晖,谢普生,邓羽平,黄文华. 全腰椎非线性有限元模型的建立与有效性验证[J]. 中国临床解剖学杂志. 2018, 36(6): 662-667 https://doi.org/10.13418/j.issn.1001-165x.2018.06.013
LING Qin-jie, LIN Hu, XIE Pu-sheng, DENG Yu-ping, HUANG Wen-hua. Development and validation of nonlinear finite element model of the whole lumbar spine[J]. Chinese Journal of Clinical Anatomy. 2018, 36(6): 662-667 https://doi.org/10.13418/j.issn.1001-165x.2018.06.013

参考文献

[1]  Kumaresan S, Yoganandan N, Pintar FA, et al. Biomechanical study of pediatric human cervical spine: a finite element approach[J]. J Biomech Eng, 2000, 122(1): 60-71.
[2]  Rohlmann A, Burra NK, Zander T, et al. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis[J]. Eur Spine J, 2007, 16(8): 1223-1231.
[3] Dabirrahmani D, Becker S, Hogg M, et al. Mechanical variables affecting balloon kyphoplasty outcome--a finite element  study[J]. Comput Met Biomech Biomed Eng, 2011, 15(3): 211-220.
[4]  Schmidt H, Galbusera F, Rohlmann A, et al. Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis[J]. Eur Spine J, 2012, 21(Suppl 5): 663-674.
[5]  Shirazi-Adl SA, Shrivastava SC, Ahmed AM. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study[J]. Spine, 1984, 9(2): 120-134.
[6]  Lu YM, Hutton WC, Gharpuray VM. Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model[J]. Spine, 1996, 21(22): 2570-2679.
[7]  Zhong ZC, Wei SH, Wang JP, et al. Finite element analysis of the lumbar spine with a new cage using a topology optimization method[J]. Med Eng Phys, 2006, 28(1): 90-98.
[8]  Rohlmann A, Bauer L, Zander T, et al. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data[J]. J Biomech, 2006, 39(6): 981-989.
[9]  Schmidt H, Heuer F, Drumm J, et al. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment[J]. Clin Biomech, 2007, 22(4): 377-384.
[10] Schmidt H, Heuer F, Wilke HJ. Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system[J]. J Biomech, 2009, 42(1): 48-54.
[11] Ayturk UM, Puttlitz CM. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine[J]. Comput Method Biomech Biomed Eng, 2011, 14(8): 695-705.
[12] Jones AC, Wilcox RK. Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis[J]. Med Eng Phys, 2008, 30(10): 1287-1304.
[13] Dreischarf M, Zander T, Bergmann G, et al. A non-optimized follower load path may cause considerable intervertebral rotations[J]. J Biomech, 2010, 43(13): 2625-2658.
[14] Panjabi MM, Oxland TR, Yamamoto I, et al. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves[J]. J Bone Joint Surg AV, 1994,76(3): 413-424.
[15] Schmidt H, Heuer F, Simon U, et al. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus[J]. Clin Biomech, 2006, 21(4): 337-344.
[16] Eberlein R, Holzapfel GA, Fröhlich M. Multi-segment FEA of the human lumbar spine including the heterogeneity of the annulus fibrosus[J]. Comput Mech, 2004, 34(2): 147-163.
[17] Xu M, Yang J, Lieberman IH, et al. Lumbar spine finite element model for healthy subjects: development and validation[J]. Comput Method Biomech Biomed Eng, 2017,20(1): 1-15.
[18]Shirazi-Adl A, Ahmed AM, Shrivastava SC. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression[J]. Spine, 1986, 11(9): 914-927.
[19]Alizadeh M, Kadir MRA, Saldanha S. Biomechanical effects of short construct spine posterior fixation, in thoracolumbar region with L1 burst fracture[C]. IEEE EMBS Conference on Biomedical Engineering & Sciences(IECBES) 2010. p. 454-459.
[20]Pearcy MJ, Bogduk N. Instantaneous axes of rotation of the lumbar intervertebral joints[J]. Spine, 1988, 13(9): 1033-1041.
[21]Zander T, Rohlmann A, Bergmann G. Influence of different artificial disc kinematics on spine biomechanics[J]. Clin Biomech, 2009, 24(2): 135-142.

基金

广东省科技计划项目(2016B090917001, 2016B0909 25001, 2016B090913004, 2017B090912006),广州市医药卫生科技项目(20171A010300)


Accesses

Citation

Detail

段落导航
相关文章

/