人体冠状动脉精确解剖三维模型及有限元虚拟现实研究

马燕山,谢英花,任国山,张志坤

中国临床解剖学杂志 ›› 2018, Vol. 36 ›› Issue (5) : 551-556.

中国临床解剖学杂志 ›› 2018, Vol. 36 ›› Issue (5) : 551-556. DOI: 10.13418/j.issn.1001-165x.2018.05.014
临床生物力学

人体冠状动脉精确解剖三维模型及有限元虚拟现实研究

  • 马燕山1, 谢英花2, 任国山3, 张志坤4
作者信息 +

3D-model and finite element analysis: study of human coronary artery

  • MA Yan-Shan1, XIE Ying-Hua2, REN Guo-Shan3, ZHANG Zhi-Kun4
Author information +
文章历史 +

摘要

目的 利用来自活体的CCTA数据建立不同狭窄程度冠状动脉的精确解剖三维模型,并对该组模型进行有限元流体力学模拟研究,分析血流速度在不同狭窄程度冠脉血管中的变化情况,以及其对动脉粥样硬化的造成的影响。  方法 利用临床患者冠脉的CCTA数据建立精确解剖的三维模型,再使用有限元软件建立有限元模型,设置各种边界条件进行模拟分析,最后采用各种直观的图形形式输出结果。  结果 血流速度在冠脉狭窄处明显加快,又在狭窄后区域明显减慢并且产生了涡流;这种明显变化的血流速度对动脉斑块会产生较大的影响。  结论 (1)利用CCTA数据建立的冠脉三维模型准确、真实。 (2)流速对动脉粥样硬化的发生发展扮演着重要的角色,狭窄动脉的流速变化可以加快动脉粥样硬化斑块的生长并影响斑块稳定性。

Abstract

Objective To investigate the hemodynamic characteristics of different degrees of stenosis in coronary artery under pulsating flow, which was performed with the help of accurate anatomical 3D models about coronary arteries having different degrees of stenosis, the models was established with CCTA data from living body. The contrast of hemodynamic parameters is obtained at different observation points; the contrast and changes of hemodynamic parameters and its influence on AS were also obtained. Methods  Selecting cases from typical coronary stenosis ones, and then the CCTA data was obtained by  using the multiplies spiral CT. After that, FEM Models about coronary stenosis were estabilished with the software. At last the calculation and analysis were performed and the results were output in a variety of intuitive graphical forms. Results The flow velocity of the coronary artery stenosis accelerated, while it slowed down at the area behind the narrow and the eddy current was produced. This kind of change can have a great effect on plaques. Conclusion The change of velocity played an important role in the development of AS, it can accurate the growth of atherosclerotic plaque and affect the stability.

关键词

动脉粥样硬化 /  流体力学 /  有限元 /  精确解剖 /  流固耦合

Key words

Atherosclerosis;   / FEM;   / Precise anatomic;   / Fluid-structure interaction; Hemodynamics

引用本文

导出引用
马燕山,谢英花,任国山,张志坤. 人体冠状动脉精确解剖三维模型及有限元虚拟现实研究[J]. 中国临床解剖学杂志. 2018, 36(5): 551-556 https://doi.org/10.13418/j.issn.1001-165x.2018.05.014
MA Yan-Shan,XIE Ying-Hua,REN Guo-Shan,ZHANG Zhi-Kun. 3D-model and finite element analysis: study of human coronary artery[J]. Chinese Journal of Clinical Anatomy. 2018, 36(5): 551-556 https://doi.org/10.13418/j.issn.1001-165x.2018.05.014

参考文献

[1]  刘佳. 动脉粥样硬化的危险因素及保护因素研究进展[J]. 医学综述, 2013, 6(19): 972-974.
[2] Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man [J]. Nature, 1969, 223(5211): 1159-1160.
[3] Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfermechanism for atherogenesis [J]. Proc R Soc Lond B Biol Sci, 1971, 177(1046):109-159.
[4] Ding Z, Friedman MH. Dynamies of human coronaral arterial motion and its potential rolein coronary atherogezlesis [J]. J Biomech Eng, 2000,122(5):488-492.
[5] C.G卡罗, T.J.佩德利, R.C. 施罗特,.WA.西特.血液循环力学[M]. 北京:科学出版社, 1986.
[6] Shahcheraghi N, Dwyer HA, Cheer AY, et al. Unsteady and three-dimensional simulation of blood flow in the human aortic arch [J]. Biomech Eng, 2002,124(4):378-387.
[7] Suo J, Ferrara DE, Sorescu D, et al. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis [J]. Arterioscler Thromb Vasc Biol,  2007, 27(2):346-351.
[8] Feintuch A, Ruengsakulrach P, Lin A, et al. Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling [J]. Am J Physiol Heart Circ Physiol, 2007, 292(2):H884-892.
[9] Grinberg L, Anor T, Madsen JR, et al. Large-scale simulation of the human arterial tree [J]. Clin Exp Pharmacol Physiol, 2009, 36(2):194-205.
[10]刘秒,张军梅,张凤丹, 等.  MIMICS软件建立青少年下领骨数据三维有限元模型初探[J]. 贵州医科大学学报, 2017, 42(7):843-846.
[11]鲍春雨, 郭宝川, 孟庆华. 人体膝关节有限元模型建立及其有效性验证[J].应用力学学报, 2017, 34(3):559-564.
[12]章德发,刘莹,史皓良, 等. 分叉动脉内局部栓塞对非牛顿血流特性的影响[J] . 南昌大学学报(工科版), 2015, 37(3):282-286.
[13] 李薇, 杜军宝. 动脉粥样硬化发病机制研究进展[J].实用儿科临床杂志, 2009, 24(1):58-60.
[14] 田作军,刘磊,董亚贤,等. 影响颈动脉斑块形成因素的临床分析[J].中华神经医学杂志, 2008, 7(11):1168-1173.
[15] Hang C, Pu F, Li S,et al. Geometric classification of the parotid siphon: association between geometry and stenoses [J]. Surg Radiol Anat, 2013, 35(5): 385-394.
[16] Perktold K, Resch M, Peter RO. Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation [J]. J Biomech, 1991, 24(6): 409-420.
[17]乔爱科, 侯映映, 侯阳. 冠状动脉狭窄几何构型对血流储备分数影响的有限元分析[J]. 中国生物医学工程学报, 2015, 34(2):198-203.
[18]林蔚羊,周毅强,黄学成. 颈内动脉狭窄对大脑动脉环血流动力学影响的有限元分析[J]. 临床生物力学, 2016, 34(6):672-676.
[19] 黄丽丹, 邓丽珠, 赵文俊, 等. 颈内动脉虹吸部血流动力学模拟与影响因素[J]. 中国组织工程研究, 2015, 37(19):5998-6004.
[20]袁玮,陈忠利. 颈动脉血液动力学的数值模拟[J]. 中国组织工程研究, 2014, 18(42):6784-6788.
[21] 章德发, 刘荣, 毕勇强, 等. 不同狭窄率的颈动脉内血流动力学数值模拟[J]. 中国老年学杂志, 2015, 7:1872-1875.

基金

河北省自然科学基金项目(H2016106072)


Accesses

Citation

Detail

段落导航
相关文章

/