支架材料在软骨组织工程中的应用进展
Research progress of application of scaffold materials on cartilage tissue engineering
[1] Stark Y, Suck K, Kasper C, et al. Application of collagen matrices for cartilage tissue engineering[J]. Exp Toxicol Pathol, 2006, 57(4): 305-311.
[2] Buma P, Pieper JS, Van Tienen T, et al. Cross-linked type I and type II collagenous matricesfor the repair of full-thickness articular cartilage defects: a study in rabbits[J]. Biomaterials, 2003, 24 (19): 3255-3263.
[3] Zhang X, Chen X, Yang T, et al. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation[J]. Cell Tissue Bank, 2014, 15(4): 531-541.
[4] Sionkowska A, Wisniewski M, Skopinska J, et al. Molecular interactions in collagen and chitosan blends[J]. Biomaterials, 2004, 25(5): 795-801.
[5] Zhao M, Chen Z, Liu K, et al. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes[J]. J Zhejiang Univ Sci B, 2015, 16(11): 914-923.
[6] Yamane S, Iwasaki N, Majima T, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial fo a novel scaffold in cartilage tissue engineering[J]. Biomaterials, 2005, 26(6): 611-619.
[7] Pangon A, Saesoo S, Saengkrit N, et al. Hydroxyapatite-hybridized chitosan/chitin whiskerbionanocomposite fibers for bone tissue engineering applications[J]. Carbohydr Polym, 2016, 36(2): 419-427.
[8] Müller WE, Neufurth M, Wang S, et al. Morphogenetically active scaffold for osteochondral repair (polyphosphate/alginate/N,O-carboxymethyl chitosan)[J]. Eur Cell Mater, 2016, 16(1): 174-190.
[9] Wang ZJ, An RZ, Zhao JY, et al. Repair of articular cartilage defects by tissue-engineered cartilage constructed with adipose-derived stem cells and acellular cartilaginous matrix in rabbits[J]. Genet Mol Res, 2014, 13(2): 4599-4606.
[10]Zhang C, Jing S, Yang K, et al. Cartilage tissue engineering with acellular cartilage matrix as scaffold in rabbit model[J] Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi., 2008, 22(7): 846-850.
[11]Lin PB, Ning LQ, Xia Z, et al. A study on repair of porcine articular cartilage defects with tissue-engineered cartilage constructed in vivo by composite scaffold materials[J]. Ann Plast Surg, 2010, 65(4): 430-436.
[12] Xu B, Xu H, Wu Y, et al. Intervertebral disc tissue engineering with natural extracellular matrix-derived biphasic composite scaffolds[J]. PLoS One, 2015, 10(4): e0124774.
[13] Noh KT, Lee HY, Shin US, et al. Composite nanofiber of bioactive glass nanofiller incorporated poly(lactic acid) for bone regeneration[J]. Mater Lett, 2010, 64(7): 802-805.
[14]Dounchis JS, Bae WC, Chen AC, et al. Cartilage repair with autogenic perichondrium cell and polylactic acid grafts[J]. Clin Orthop Relat Res, 2000, 38(377): 248-264.
[15]Antunes JC, Oliveira JM, Reis RL, et al. Novel poly(L lactic acid)/hyaluronic acid macroporous hybridsscaffolds: characterization and assessment of cytotoxicity[J]. J Biomed Mater Res A, 2010, 94(3): 856-869.
[16] Cui YL, Hou X, Qi AD, et al. Biomimetic surface modification of poly (L lactic acid)with gelatin and its effects on articular chondrocytes in vitro[J]. J Biomed Mater Res A, 2003, 24(21): 3859-3868.
[17]Baltzer AW, Whalen JD, Stefanovic-Racic M, et al. Adenoviral transduction of human osteoblastic cell cultures. A new perspective for gene therapy of bone diseases[J]. Acta Orthop Scand, 2009, 70(5): 419-424.
[18]Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering[J]. Bone, 2010, 46(2): 386-395.
[19]Duan ZX, Zheng QX, Guo XD, et al. Adhesion,proliferation and osteodifferentiation of bone mesenchymal stem cells on PLGA-[ASP-PEG] tri-bolck polymer scaffolds[J]. Zhongguo Gu shang, 2008, 21(4): 282-284.
[20]Shi C, Liu P, Liu X, et al. The effects of mPEG proportion and LA/GA ratio on degradation and drug release behaviors of PLGA-mPEG microparticles[J]. Pharmazie, 2016, 71(5): 243-246.
[21]Sharma C, Dinda AK, Potdar PD, et al. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2016, 9(5): 416-427.
[22]Sheikh FA, Ju HW,Moon BM, et al. Hybrid scaffolds based on PLGA and silk for bone tissue engineering[J]. J Tissue Eng Regen Med, 2016, 10(3): 209-221.
[23]Ao C, Niu Y, Zhang X, et al. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering[J]. Int J Biol Macromol, 2017, 9(7): 568-573.
[24]Yao Q, Cosme JG, Xu T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranialbone formation[J]. Biomaterials, 2017, 38(1):115-127.
[25]Qi X, Li H, Qiao B, et al. Development and characterization of an injectable cement of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer/calcium sulfate hemih ydrate for bone repair[J]. Int J Nanomedicine, 2013, 8(4): 4441-4452.
[26] Liu J, Mao K, Liu Z, et al. Injectable biocomposites for bone healing in rabbit femoral condyle defects[J]. PLoS One, 2013, 8(10): e75668.
军队实验动物专项科研课题(SYDW-2016-007); 福建省自然科学基金资助(2017J05122)
/
〈 |
|
〉 |