肝脏特异性DEK基因敲除小鼠模型的制备及鉴定
Preparation and identification of liver specific DEK knockout mice
目的 利用Cre/loxp基因敲除技术构建肝脏特异性DEK基因敲除小鼠,为研究DEK基因在肝脏中的生物学功能提供重要动物模型。 方法 将DEKflox/flox小鼠与肝脏特异性表达Alb-Cre重组酶的小鼠进行交配和鉴定,筛选出子代中DEKflox/+/Alb-Cre小鼠与DEKflox/flox小鼠进行交配与鉴定,获得DEKflox/flox/Alb-Cre小鼠,将DEKflox/flox/Alb-Cre小鼠与DEKflox/flox小鼠进行交配,其子代基因型为DEKflox/flox/Alb-Cre的小鼠即为本实验所构建的肝脏特异性DEK基因敲除小鼠,DEKflox/flox小鼠即为对照小鼠。提取小鼠尾基因组DNA,通过PCR鉴定子代小鼠的基因型;提取小鼠肝脏RNA和总蛋白,利用Real-Time PCR和Western Blotting技术检验DEK基因在小鼠肝脏中的mRNA水平和蛋白质水平的表达情况,使用激光共聚焦检测DEK蛋白在小鼠肝脏的表达情况;对小鼠肝脏行苏木精-伊红染色观察小鼠肝组织的形态学变化。 结果 PCR结果表明子代小鼠基因型符合DEKflox/flox/Alb-Cre;肝脏特异性DEK基因敲除小鼠肝组织中DEK基因的mRNA水平及蛋白质水平显著低于DEKflox/flox型小鼠;肝脏特异性DEK基因敲除小鼠肝组织的形态学特征与对照组小鼠相比无明显差异。 结论 本研究利用Cre/Loxp技术成功构建了肝脏特异性DEK基因敲除小鼠,为在动物水平进一步研究DEK基因的作用提供了重要动物模型。
Objective To establish a stable liver-specific DEK knockout mice and provide the important animal model for further studying the biological function of DEK gene in the liver. Methods Mating and identification of DEKflox/flox mice with Alb-Cre mice were carried out, and the DEKflox/+/Alb-Cre mice were screened. Mating and identification of DEKflox/+/Alb-Cre mice with DEKflox/flox mice was carried out, and the DEKflox/flox/Alb-Cre mice were screened. Mating and identification of DEKflox/flox/Alb-Cre mice with DEKflox/flox mice were carried out, and screening the DEKflox/flox/Alb-Cre mice was performed. The DEKflox/flox/Alb-Cre mouse was a liver-specific DEK knockout mouse and the DEKflox/flox mouse was a control mouse. The mouse genotypes were identified by PCR. We used Real-Time PCR and Western Blotting to detect the expression of DEK mRNA and protein levels in mouse liver. We used Immunofluorescence to detect DEK gene expression in mouse liver. The hepatic tissue morphology of the mouse liver was observed using hematoxylin-eosin staining. Results PCR results indicate that mouse genotypes are consistent with DEKflox/flox/Alb-Cre. Compared with DEKflox/flox mice, DEK mRNA and protein levels were significantly reduced, and liver tissue morphology showed no significant difference. Conclusion In this study, the liver-specific DEK knockout mice are successfully constructed using the Cre/Loxp technology, providing an important animal model for further study of the role of DEK genes.
  / DEK / Cre/Loxp / 肝脏 / 基因敲除
DEK / Cre/Loxp / Liver / Gene knockout
[1] Privette Vinnedge LM, Kappes F, Nassar N, et al. Stacking the DEK: from chromatin topology to cancer stem cells[J]. Cell cycle, 2013, 12(1): 51-66.
[2] Von Lindern M, Fornerod M, Van Baal S, et al. The translocation (6; 9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA[J]. Mol cell biol, 1992, 12(4): 1687-1697.
[3] Kim DW, Chae JIL, Kim JY, et al. Proteomic analysis of apoptosis related proteins regulated by proto-oncogene protein DEK[J]. J cell biochem, 2009, 106(6): 1048-1059.
[4] Shibata T, Kokubu A, Miyamoto M, et al. DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high-grade neuroendocrine carcinoma of the lung[J]. Oncogene, 2010, 29(33): 4671-4681.
[5] Kappes F, Damoc C, Knippers R, et al. Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK[J]. Mol cell biol, 2004, 24(13): 6011-6020.
[6] Wise-Draper TM, Allen HV, Jones EE, et al. Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions[J]. Mol cell biol, 2006, 26(20): 7506-7519.
[7] Yu L, Huang X, Zhang W, et al. Critical role of DEK and its regulation in tumorigenesis and metastasis of hepatocellular carcinoma[J]. Oncotarget, 2016, 7(18): 26844-26855.
[8] Adams AK, Hallenbeck GE, Casper KA, et al. DEK promotes HPV-positive and-negative head and neck cancer cell proliferation[J]. Oncogene, 2015, 34(7): 868-877.
[9] Datta A, Adelson ME, Mogilevkin Y, et al. Oncoprotein DEK as a tissue and urinary biomarker for bladder cancer[J]. BMC cancer, 2011, 11: 234.
[10] Martinez-Useros J, Rodriguez-Remirez M, Borrero-Palacios A, et al. DEK is a potential marker for aggressive phenotype and irinotecan-based therapy response in metastatic colorectal cancer[J]. BMC cancer, 2014, 14: 965.
[11] Riveiro-Falkenbach E, Ruano Y, García-Martín RM, et al. DEK oncogene is overexpressed during melanoma progression[J]. Pigment Cell Melanoma Res, 2017, 30(2):194-202.
国家自然科学基金面上项目(81670096);重庆市基础科学与前沿技术研究专项一般项目(CSTC2016JCYJA0354)
/
〈 |
|
〉 |