冻融循环及物理匀浆制备高质量脂肪脱细胞基质
Prepare decellularized adipose tissue by freeze-thaw cycle and mechanical homogenization
目的 采用冻融循环及物理匀浆制备脂肪脱细胞基质(Decellularized adipose tissue, DAT)以提高其自发诱导成脂能力。 方法 利用匀浆法在短时间内对脂肪组织进行脱油,再经后续脱细胞处理后制备高质量DAT(DAT-1),传统方式制备的DAT(DAT-2)作为对照。检测基质相关蛋白CollagenⅣ和Laminin的含量,并植入小鼠体内验证脂肪再生效果。 结果 DAT-1实现了有效的脱细胞处理,且DAT-1较DAT-2有更多基质关键性蛋白CollagenⅣ,Laminin的保留,小鼠体内移植结果进一步表明DAT-1比DAT-2具有更好脂肪再生能力。 结论 物理匀浆是一种快速高效地去油方式,避免化学试剂对细胞外基质的破坏,提高DAT支架上关键性蛋白的保留,促进了DAT体内脂肪再生。
Objective Decellularized adipose tissue (DAT) was prepared by physical homogenization to improve its ability of spontaneous lipid induction. Methods In this study, we used homogenization method to remove lipid from adipose tissue, a novel DAT (DAT-1) was fabricated after subsequent decellularization process. Ordinary DAT served as control. Results The results revealed that DAT-1 achieved the same decellularization efficiency, but exhibited better retention of ECM components (laminin and collagen Ⅳ) and in vivo recellularization, compared to those with ordinary DAT. Conclusions Mechanical homogenization is a rapid and efficient method to remove lipid from adipose tissue, which could avoid the use of harsh chemical agent and lead to the better retention of ECM components, promoting the in vivo adipose tissue regeneration of DAT.
  / 脱细胞基质 / 冻融循环 / 物理匀浆 / 脂肪再生
Decellularized matrix / Freeze-thaw cycle / Mechanical homogenization / Adipose tissue regeneration
[1] 廖选,刘宏伟. 脂肪组织脱细胞基质研究现状及展望[J]. 中国美容整形外科杂志, 2017, 28(12): 729-732.
[2] Adam Young D, Bajaj V, Christman KL. Award winner for outstanding research in the PhD category, 2014 Society for Biomaterials annual meeting and exposition, Denver, Colorado, April 16-19, 2014: Decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation [J]. J Biomed Mater Res A. 2014, 102(6): 1641-1651.
[3] Kawecki M, ?abu? W, Klama-Baryla A,et al. A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix' scaffolds and their role in regenerative medicine[J]. J Biomed Mater Res B Appl Biomater. 2018, 106(2): 909-923.
[4] Banyard DA, Borad V, Amezcua E, et al. Preparation, Characterization, and Clinical Implications of Human Decellularized Adipose Tissue Extracellular Matrix (hDAM): A Comprehensive Review[J]. Aesthet Surg J, 2016, 36(3): 349-357.
[5] Yao Y, Dong Z, Liao Y, et al. Adipose extracellular matrix/stromal vascular fraction gel:a novel adipose tissue-derived iInjectable for stem cell therapy[J]. Plast Reconstr Surg, 2017, 139(4): 867-879.
[6] Flynn LE. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells[J]. Biomaterials, 2010, 31(17): 4715-4724.
[7] Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance[J]. Methods, 2015, 84: 25-34.
[8] 彭蒙蒙,梅劲. 器官脱细胞化的研究进展[J]. 中国临床解剖学杂志, 2012, 30(3): 362-364.
[9] Banyard DA, Borad V, Amezcua E, et al. Preparation, characterization, and clinical implications of human decellularized adipose tissue extracellular matrix (hDAM): a comprehensive review[J]. Aesthet Surg J, 2016, 36(3): 349-357.
[10]Flynn L, Semple JL, Woodhouse KA. Decellularized placental matrices for adipose tissue engineering[J]. J Biomed Mater Res A, 2006, 79(2): 359-369.
[11]Rieder E, Kasimir MT, Silberhumer G, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells[J]. J Thorac Cardiovasc Surg, 2004, 127(2): 399-405.
[12]O'Neill JD, Anfang R, Anandappa A, et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering [J]. Ann Thorac Surg, 2013, 96(3): 1046-1056.
[13]Tapias LF, Ott HC. Decellularized scaffolds as a platform for bioengineered organs[J]. Curr Opin Organ Transplant, 2014, 19(2): 145-152.
[14] He Y, Lin M, Wang X, et al. Optimized adipose tissue engineering strategy based on a neo-mechanical processing method[J]. Wound Repair Regen. 2018, 26.
[15] Kuljanin M, Brown CFC, Raleigh MJ, et al. Collagenase treatment enhances proteomic coverage of low-abundance proteins in decellularized matrix bioscaffolds[J]. Biomaterials, 2017, 144: 130-143.
国家自然科学基金(81471881,81372083,81171834),广州市健康医疗协同创新重大专项(7414275040815),广东省自然科学基金(S2012010009370),广州市科技计划重点项目(11C32120716)
/
〈 |
|
〉 |