小鼠胚胎干细胞表面糖分子被凝集素特异性识别的研究
The research of specified recognition of lectins with carbohydrate modified on surface markers of mouse embryonic stem cells
目的 探讨小鼠胚胎干细胞表面糖蛋白能够被特异性识别的凝集素。 方法 通过磁珠筛选出小鼠胚胎干细胞系ES-D3 和 ESC57BL/6中周期特异性胚胎抗原1(stage specific embryonic antigen-1,SSEA-1)阳性的胚胎干细胞,进行凝集素的特异性结合,流式细胞仪筛选和免疫荧光染色,观察凝集素特异性结合情况。 结果 磁珠法可以筛选出99%的SSEA-1阳性细胞,它们代表着未分化的胚胎干细胞。在SSEA-1阳性细胞中,凝集素的结合实验的流式筛选提示,凝集素DSL结合率达99%,多花紫藤凝集素(Wisteria Floribunda Lectin,WFL)的结合呈双相性,部分不结合,部分高度结合;而荆豆凝集素I( Ulex europaeus Agglutinin UEAI)几乎不结合。 结论 曼陀罗植物凝集素(Datura stramonium Lectin,DSL)可以象SSEA-1一样,作为小鼠胚胎干细胞的特异性标志物,而UEAI可以作为阴性标志物。
Objective Identification of lectins which can specified recognize the carbohydrate modified surface markers on mouse embryonic stem cells. Methods In the present study, a panel of 3 lectins and carbohydrate antibodies was used to characterize the carbohydrate surface markers of mouse Embryonic Stem (ES) Cells by Flow cytometry assay and Immunocytochemistry. Results Enrichment of mouse ES cells yielded approximately 99% of SSEA-1-positive mouse ES cells. A uniform and high percentage of binding was observed for DSL, having similar percentage of binding to SSEA-1 (99%). Partial binding of WFL was observed in mouse ES cells which was also reflected by the respective immunocytochemistry images. A very low percentage of binding was observed for UEAI. Conclusion DSL can be used to determine pluripotency which shows similar binding to SSEA-1, a well-established pluripotent marker and UEAI is a negative marker. Taken together, the data has provided information on the cell surface carbohydrate profile of mouse ES cells.
小鼠胚胎干细胞 / 周期特异性胚胎抗原1 / 凝集素
[1] Kim H, Jang H, Kim TW, et al. Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency[J]. Stem Cells, 2015,33(9):2699-2711.
[2] Nand A, Singh V, Wang P, et al. Glycoprotein profiling of stem cells using lectin microarray based on surface plasmon resonance imaging[J]. Anal Biochem 2014,465:114-120.
[3] Wearne KA, Winter HC, O'Shea K, et al. Use of lectins for probing differentiated human embryonic stem cells for carbohydrates[J]. Glycobiology, 2006,16(10):981-990.
[4] Calvanese V, Fraga MF. Epigenetics of embryonic stem cells[J]. Adv ExpMed Biol 2012,741: 231-253.
[5] Henderson JK, Draper JS, Baillie HS, et al. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens[J]. Stem Cells, 2002,20(4): 329-337.
[6] Wang YC, Nakagawa M, Garitaonandia I, et al. Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis[J]. Cell Res, 2011, 21(11): 1551-1563.
[7] Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells[J]. Nat Genet, 2006,38(4):431-440.
[8] Zhao W, Ji X, Zhang F, et al. Embryonic stem cell markers[J]. Molecules, 2012,17(6): 6196-6236.
[9] 田丽娜, 缪竞诚. 干细胞维持多潜能性的能力和机制[J]. 中国组织工程研究与临床康复, 2010, 14(10):7539-7542.
[10]关鑫, 梁一. 凝集素及其应用的研究进展[J]. 检验医学与临床, 2016,13(9):1268-1270.
[11]Toyoda M, Yamazaki-Inoue M, Itakura Y, et al. Lectin microarray analysis of pluripotent and multipotent stem cells[J]. Genes Cells, 2011,16(1):1-11.
[12]Tucker-Burden C, Chappa P, Krishnamoorthy M,et al. Lectins identify glycan biomarkers on glioblastoma-derived cancer stem cells[J]. Stem Cells Dev, 2012, 21(13):2374-2386.
[13]Zhenwei He, Yue An, Gang Shi, et al. Characterization of carbohydrate surface markers on mouse embryonic stem cells[J]. J Stem Cell Res Therapy, 2016, 6(8):1000353.
深圳市科创委基础研究资助项目(JCYJ201404161 22812008);深圳市科创委技术攻关项目(JSGG20150602143414338)
/
〈 |
|
〉 |