两种非解剖复位内固定Pauwels Ⅲ型头下型股骨颈骨折的有限元分析

郑翔,许锦煌,黄建荣

中国临床解剖学杂志 ›› 2017, Vol. 35 ›› Issue (6) : 665-670.

中国临床解剖学杂志 ›› 2017, Vol. 35 ›› Issue (6) : 665-670. DOI: 10.13418/j.issn.1001-165x.2017.06.015
临床生物力学

两种非解剖复位内固定Pauwels Ⅲ型头下型股骨颈骨折的有限元分析

  • 郑翔1, 许锦煌1, 黄建荣2
作者信息 +

Finite element analysis of two nonanatomic reductions of Pauwels Ⅲ subcapital femoral fractures fixation

  • ZHENG Xiang1, XU Jin-huang1, HUANG jian-rong 2
Author information +
文章历史 +

摘要

目的 通过三维有限元法对“阳性支撑”和“阴性支撑”两种非解剖复位内固定Pauwels Ⅲ型头下型股骨颈骨折进行生物力学比较,并为临床应用提供理论参考。  方法 将25岁男性青年健康股骨CT数据及PH螺钉数据导入相关软件,分别建立Pauwels Ⅲ型头下型股骨颈骨折的“阳性支撑”和“阴性支撑”两种非解剖复位三维模型,再通过PH螺钉系统行内固定。应用有限元分析法在相同加载和约束条件下模拟“单腿站立”、“行走”两种工况。评价和比较“阳性支撑”组和“阴性支撑”组骨折端最大位移、股骨最大应变、内固定最大应力等指标。   结果 在两种工况下,骨折端最大位移“阳性支撑”组和“阴性支撑”组在“单腿站立”、“行走”两种工况下分别为0.87 mm和1.38 mm, 股骨最大应变分别为1.27 mm和1.98 mm, 1.77e-2 和 2.47e-2, 1.89e-2 和 2.12e-2, 内固定最大应力分别为304.47 Mpa和359.03 Mpa, 362.24 Mpa和391.52 Mpa。  结论 本研究通过有限元分析方法证实了Yechiel Gotfried复位理论适用于Pauwels Ⅲ型头下型股骨颈骨折该型骨折,“阳性支撑”复位较“阴性支撑”复位具有生物力学优势。

Abstract

Objective To explore and compare the biomechanical properties of two nonanatomic reductions of Pauwels Ⅲ subcapital femoral fractures fixation using finite element analysis, therefore to provide theoretic reference for clinic application. Methods Using a CT scan from a 25-year-old healthy male femur and the measuring data of a PH Nail (Physiological Hip Nail) and screws, positive buttress reduction and negative buttress reduction models of Pauwels Ⅲ subcapital femoral fracture fixation were developed using finite element soft wares. The maximum displacement of the fracture sites, the maximum Von Mises strain on femur, the maximum von Mises stress on implants were compared under two loading conditions simulating “stance” and “walking” respectively.  Results The maximum displacement of the fracture sites of two models under “stance” and “walking” conditions were 0.87 mm and 1.38 mm, 1.27 mm and 1.98 mm, respectively. The maximum Von Mises strains on femur were 1.77e-2 and 2.47e-2, 1.89e-2 and 2.12e-2, respectively. The maximum von Mises stresses on implants were 304.47 Mpa and 359.03 Mpa, 362.24 Mpa and 391.52 Mpa, respectively.  Conclusions  The reduction of positive buttress has better biomechanical properties than negative buttress under the same loading conditions for Pauwels Ⅲ subcapital femoral fracture fixation. Results of this study support the Yechiel Gotfried theory for Pauwels Ⅲ subcapital femoral fracture fixation from a biomechanical perspective.

关键词

头下型股骨颈骨折 /  非解剖复位 /  阳性支撑 /  阴性支撑 /  有限元分析

Key words

Subcapital femoral fracture /  Nonanatomic reduction /  Positive buttress /  Negative buttress /  Finite element analysis

引用本文

导出引用
郑翔,许锦煌,黄建荣. 两种非解剖复位内固定Pauwels Ⅲ型头下型股骨颈骨折的有限元分析[J]. 中国临床解剖学杂志. 2017, 35(6): 665-670 https://doi.org/10.13418/j.issn.1001-165x.2017.06.015
ZHENG Xiang, XU Jin-huang, HUANG jian-rong. Finite element analysis of two nonanatomic reductions of Pauwels Ⅲ subcapital femoral fractures fixation[J]. Chinese Journal of Clinical Anatomy. 2017, 35(6): 665-670 https://doi.org/10.13418/j.issn.1001-165x.2017.06.015

参考文献

[1]  Hawks MA, Kim H, Strauss J, et al. Does a trochanteric lag screw improve fixation of vertically oriented femoral neck fractures A biomechanical analysis in cadaveric bone [J]. Clin Biomech, 2013, 28(8): 886-891.
[2] Mittal R, Banerjee S. Proximal femoral fractures: Principles of management and review of literature[J]. J Clin Orthop Trauma, 2012, 3 (1):15-23.
[3] van Vust AB. Femoral neck non-unions: How do l do it [J] ? Injury, 2007, 38 (Suppl 2): S51-54.
[4] Stacey SC, Renninger CH, Hak D, et al. Tips and tricks for ORIF of displaced femoral neck fractures in the young adult patient[J]. Eur J Orthop Surg Traumatol, 2016, 26(4):355-363.
[5]  Nagi ON,Dhillon MS. Management of neglected/uninvited fractures of the femoral neck in young adults[J]. Current Orthopedics, 2003,17(5):394-402.
[6]  Ehlinger M, Moser T, Adam P, et al. Early prediction of femoral head avascular necrosis following neck fracture[J]. Orthop Traumatol Surg Res, 2011,97(1):79-88.
[7] Gotfried Y. The Gotfried (Nonanatomic, Closed) Reduction of Unstable Subcapital Femoral Fractures[J]. Techniques in Orthopaedics, 2014, 29(4):194-96
[8] Gotfried Y, Kovalenko S, Fuchs D. Nonanatomical reduction of displaced subcapital femoral fractures (Gotfried reduction) [J]. J Orthop Trauma, 2013, 27(11): e254-e259.
[9]  樊黎霞, 丁光兴, 费王华, 等. 基于CT图像的长管骨有限元材料属性研究及实验验证[J]. 医用生物力学, 2012, 28(1):102-108.
[10]Tupis TM, Altman GT, Altman DT, et al. Femoral bone strains during antegrade nailing: A comparison of two entry points with identical nails using finite element analysis[J]. Clin Biomech, 2012, 27(4): 354-359.
[11]Saqib N, Cerianne P, Tim F, et al. Finite element analysis modelling of proximal femoral fractures, including post-fixation periprosthetic fractures[J]. Injury, 2013, 44 (6):791-795.
[12] Mahaisavariya B, Sitthiseripratip K, Suwanprateeb J. Finite element study of the proximal femur with retained trochanteric gamma nail and after removal of nail. [J]. Injury, 2006, 37 (8):778-785.
[13]Mei J, Liu S, Jia G, et al. Finite element analysis of the effect of cannulated screw placement and drilling frequency on femoral neck fracture fixation[J]. Injury, 2014, 45(12):342-348.
[14]Chen DW, Lin C, Hu C, et al. Finite element analysis of different repair methods of Vancouver B1 periprosthetic fractures after total hip arthroplasty[J]. Injury, 2012, 43(7): 1061-65.
[15]Sim E, Freimuller W, Reiter TJ. Finite element analysis of the stress distributions in the proximal end of the femur after stabilization of a pertrochanteric model fracture: a comparison of two implants[J]. Injury, 1995, 26(7): 445-449.
[16]Sabalic S, Kodvanj J, Pavic A. Comparative study of three models of extra-articular distal humerus fracture osteosynthesis using the finite element method on an osteoporotic computational model[J]. Injury, 2013, 44 (Suppl 3): S56-S61.
[17]Hambli R, Lespessailles E, Benhamou C. Integrated remodeling-to-fracture finite element model of human proximal femur behavior[J]. J Mech Behav Biomed Mater, 2013, 17(1): 89-106.
[18]Disegi JA, Eschbach L. Strainless steel in bone surgery[J]. Injury, 2004, 31(Suppl 4): D2-6.     


Accesses

Citation

Detail

段落导航
相关文章

/