用于治疗难复位性寰枢椎脱位的新型经口前路寰枢椎侧块融合器的生物力学研究

莫少东,艾福志,李克维,李柯柯,陈树金

中国临床解剖学杂志 ›› 2017, Vol. 35 ›› Issue (3) : 307-311.

中国临床解剖学杂志 ›› 2017, Vol. 35 ›› Issue (3) : 307-311. DOI: 10.13418/j.issn.1001-165x.2017.03.015
临床生物力学

用于治疗难复位性寰枢椎脱位的新型经口前路寰枢椎侧块融合器的生物力学研究

  • 莫少东1,2, 艾福志1,2, 李克维2, 李柯柯2, 陈树金2
作者信息 +

Biomechanical study of a novel transoral atlantoaxial lateral mass fusion cage used for irreducible atlantoaxial dislocation

  • MO Shao-dong 1,2, AI Fu-zhi 1,2, LI Ke-wei 2, LI Ke-ke 2, CHEN Shu-jin 2
Author information +
文章历史 +

摘要

目的 比较新型寰枢椎侧块融合器与传统内固定方式(TARP+髂骨块内固定技术,后路椎弓根钉棒固定技术)的生物力学差异。   方法 收集40例TARP术后病人的CT扫描数据进行测量并设计新型融合器。挑选6具新鲜上颈椎标本。分别进行完整状态,失稳状态及进行3种内固定方式[(TARP+融合器(A1);TARP+髂骨块(A2);后路椎弓根钉棒技术(B)]处理。再测量不同状态下标本的屈伸,侧屈,旋转6组动作的活动范围(ROM)并进行统计学分析。   结果 新型融合器有三种型号:13/12/7,12/11/7,11/10/7(长/宽/高);矢状面角设计为:16°/18°/20°。生物力学数据分析显示:Cage组(A1)与髂骨组(A2)在6个方向的活动度差异无统计学差异(P>0.05);在屈伸及旋转活动中,TARP固定组(A1、A2)与后路固定组(B)不存在显著差异(P>0.05);在侧屈活动中,TARP固定组(A1、A2)与后路固定组(B)存在显著差异(P<0.05)。   结论 配合TARP技术使用的新型融合器与TARP+髂骨块的生物力学稳定性相仿,在侧屈方向优于寰枢椎后路椎弓根螺钉技术。且融合器相对于髂骨块而言,理论上具有以下优势:①简化手术步骤;②避免取髂骨相关并发症。

Abstract

Objective  To compare the stabilities of the lateral mass fusion cage and iliac crest autograft combined with Transoral Atlantoaxial Reduction Plate (TARP) system and posterior C1-C2 pedicle screw-rod system.  Method Cage was designed based on the three-dimension parameters of 40 postoperative patients operated with TARP. Range of motion (ROM) in flexion-extension, left-right bending and axial rotation of 6 cadaveric specimens with different treatments were recorded.  Results  The measured data indicated that feasible cage design were in 3 sizes: 13/12/7/16°,12/11/7/18°,11/10/7/20°(length/width/height/sagittal angle);ROM of TARP (combined with Cage or ilium) was smaller compared with posterior C1-C2 pedicle screw-rod system and difference between left and right bending was statistically significant.  Conclusion The stiffness was analogous between TARP system (combined with cage or iliac crest autograft) and posterior C1-C2 pedicle screw-rod system. Furthermore, cage combined with TARP may simplify surgeric procedure and decrease the incidence of clinical complication.

关键词

经口前路 /  寰枢椎 /  融合器 /  生物力学

Key words

Transoral approach /  Atlantoaxial /  Cage /  Biomechanics

引用本文

导出引用
莫少东,艾福志,李克维,李柯柯,陈树金. 用于治疗难复位性寰枢椎脱位的新型经口前路寰枢椎侧块融合器的生物力学研究[J]. 中国临床解剖学杂志. 2017, 35(3): 307-311 https://doi.org/10.13418/j.issn.1001-165x.2017.03.015
MO Shao-dong, AI Fu-zhi, LI Ke-wei, LI Ke-ke, CHEN Shu-jin. Biomechanical study of a novel transoral atlantoaxial lateral mass fusion cage used for irreducible atlantoaxial dislocation[J]. Chinese Journal of Clinical Anatomy. 2017, 35(3): 307-311 https://doi.org/10.13418/j.issn.1001-165x.2017.03.015

参考文献

[1] Simsek S, Yigitkanli K, Belen D, et al. Halo traction in basilar invagination: technical case report[J]. Surg Neurol, 2006,66(3):311-314.
[2] Yin Q, Ai F, Zhang K, et al, Transoral atlantoaxial reduction plate internal fixation for the treatment of irreducible atlantoaxial dislocation: a 2- to 4-year follow-up[J]. Orthop Surg, 2010,2(2):149-155.
[3]  Ai F, Yin Q, Wang Z, et al, Applied anatomy of transoral atlantoaxial reduction plate internal fixation[J]. Spine, 2006,31(2):128-132.
[4]  Ai F, Yin Q, Xu D, et al, Transoral atlantoaxial reduction plate internal fixation with transoral transpedicular or articular mass screw of c2 for the treatment of irreducible atlantoaxial dislocation: two case reports[J]. Spine, 2011,36(8):E556-562.
[5]  Kandziora F, Schollmeier G, Scholz M, et al, Influence of cage design on interbody fusion in a sheep cervical spine model[J]. J Neurosurg, 2002,96(3 Suppl):321-332.
[6] Li Y, Wu Z, Li X, et al, A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model[J]. Biomaterials, 2014,35(22):5647-5659.
[7] Kandziora F, Schulze-Stahl N, Khodadadyan-Klostermann C, et al, Screw placement in transoral atlantoaxial plate systems: an anatomical study[J]. J Neurosurg, 2001, 95(1 Suppl):80-87.
[8]  马向阳, 尹庆水, 吴增晖, 等. 寰枢椎后路四种钉棒固定方法的三维稳定性评价[J]. 中国脊柱脊髓杂志, 2008,18(6):464-468.
[9]  Panjabi M,  Dvorak J, Duranceau J, et al. Three-dimensional movements of the upper cervical spine[J]. Spine,1988,13(7):726-730.
[10]田伟,安岩,李加宁,等. 斜坡枢椎角的正常值及其与延髓脊髓角的相关性研究[J]. 中华骨科杂志,2014,34(3):306-310.
[11]Dong Y, Hong M, Jianyi L, et al, Quantitative anatomy of the lateral mass of the atlas[J]. Spine, 2003,28(9):860-863.
[12]Cattrysse E, Provyn S, Gagey O, et al, In vitro three dimensional morphometry of the lateral atlantoaxial articular surfaces[J].Spine, 2008, 33(14):1503-1508.
[13]Nadim Y, Sabry F, Xu R, et al, Computed tomography in the determination of transarticular C1-C2 screw length[J]. Orthopedics, 2000,23(4):373-375.
[14]Xia H, Yin Q, Ai F, et al, Treatment of basilar invagination with atlantoaxial dislocation: atlantoaxial joint distraction and fixation with transoral atlantoaxial reduction plate (TARP) without odontoidectomy[J]. Eur Spine J, 2014,23(8):1648-1655.
[15]Yang J, Ma X, Xia H, et al, Transoral anterior revision surgeries for basilar invagination with irreducible atlantoaxial dislocation after posterior decompression: a retrospective study of 30 cases[J]. Eur Spine J, 2014,23(5): 1099-1108.
[16]Kandziora F, Pflugmacher R, Ludwing K, et al, Biomechanical comparison of four anterior atlantoaxial plate systems[J]. J Neurosurg, 2002, 96(3):313-320.
[17]石林,夏虹,赵卫东,等. 第Ⅲ代经口寰枢椎复位钢板系统三维稳定性评价[J]. 中国临床解剖学杂志, 2012,30(3):342-344.
[18]Richter M, Schmidt R, Claes L, et al, Posterior atlantoaxial fixation: biomechanical in vitro comparison of six different techniques[J]. Spine, 2002,27(16):1724-1732.
[19]Melcher R, Puttlitz C, Kleinstueck F, et al, Biomechanical testing of posterior atlantoaxial fixation techniques[J]. Spine,2002, 27(22):2435-2440.

基金

 军队十二五重点项目(BWS11C065)


Accesses

Citation

Detail

段落导航
相关文章

/