HSNGLPL短肽修饰的聚氨酯的体内反应性分析
The bio-reactivity analysis of HSNGLPL peptide grafted-polyurethane
目的 研究短肽HSNGLPL修饰的聚氨酯在体内与体外的生物相容性与生物活性。 方法 将单纯的HSNGLPL短肽溶液、三种不同浓度HSNGLPL短肽修饰的聚氨酯(P-PU)及聚氨酯(BDO-PU)注射或种植在小鼠体内或在体外与C2C12细胞共培养,通过H&E检测体内局部炎症渗出、免疫荧光检测体内单核/巨噬细胞渗出凋亡和肌纤维的再生以及通过细胞增殖毒性反应检测体外共培养结果。 结果 在体外,BDO-PU、L-P-PU和M-P-PU是合格的生物材料,具有优良的生物相容性;在体内,BDO-PU只在材料28d诱发持久的单核/巨噬细胞的渗出和肌纤维的坏死,而P-PU在肌肉内诱发的炎症、坏死反应比BDO-PU更加复杂、持久,持续时间甚至超过56d。对于细胞凋亡而言,P-PU材料周围凋亡的巨噬细胞数却明显的低于BDO-PU组。 结论 HSNGLPL修饰的聚氨酯在体内与体外具有生物活性及优良的生物相容性。
Objective To study the biocompatibility of HSNGLPL peptide grafted- polyurethane in vivo and in vitro. Methods HSNGLPL peptide solution, HSNGLPL peptide grafted polyurethane with different concentration, and BDO- PU are injected or implanted into tibialis anterior muscle of B6 mice, or co-cultured with C2C12 cell in vitro. CCK8, H&E, immunofleorecence was used to explore the material-induced inflammatory and immuno-reactivity in vitro and in vivo. Results HSNGLPL peptide grafted-polyurethane is biocompatible in vivo. BDO-PU induced a conspicuous monocytes/macrophages infiltration and myofiber degeneration, the inflammatory invasion and myofiber necrosis are mainly detected in the site around the implants. In contrast, peptide grafted-PUs induced intramuscular inflammation is more complex and sustained more than 56d. The number of apoptotic macrophages in muscle containing peptide-PU significantly lower than that containing BDO-PU. Conclusions HSNGLPL peptide grafted PUs triggers the more severe inflammation response than that of BDO-PU, and eventually change biocompatibility of PU material in vitro and in vivo.
聚氨酯 / HSNGLPL短肽 / 炎症反应 / 免疫 / 渗出
Polyurethanes / HSNGLPL peptide; Inflammation;   / Immunity;   / Infiltration
[1] Rahimi A, Mashak A. Review on rubbers in medicine: natural, silicone and polyurethane rubbers[J]. Plastics Ruber and Composites, 2013, 42(6): 223-230.
[2] Shu JY, Xu T. 7.08-peptide-polymer conjugates toward functional hybrid biomaterials[J]. Polymer Science A Comprehensive Reference, 2012: 141-158.
[3] Shah RN, Shah NA, Del Rosario Lim MM, et al. Supramolecular design of self-assembling nanofibers for cartilage regeneration[J]. Proc Natl Acad Sci U S A, 2010, 107(8): 3293-3298.
[4] Zhou M, Wang W, Liao Y, et al. In vitro biocompatibility evaluation of silk-fibroin/polyurethane membrane with cultivation of HUVECs[J]. Frontiers of Materials Science, 2014, 8(1): 63-71.
[5] Gu Y, Chen L, Yang H L, et al. Evaluation of an injectable silk fibroin enhanced calcium phosphate cement loaded with human recombinant bone morphogenetic protein-2 in ovine lumbar interbody fusion[J]. J Biomed Mater Res A, 2011, 97(2): 177-185.
[6] Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis[J]. J Exp Med, 2007, 204(5): 1057-1069.
[7] Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration[J]. Physiol Rev, 2004, 84(1): 209-238.
[8] Anderson JM. Chapter 4 Mechanisms of inflammation and infection with implanted devices [J]. Cardiovasc Pathol,1993, 2(3, Supplement): 33-41.
[9] Guelcher SA. Biodegradable polyurethanes: synthesis and applications in regenerative medicine[J]. Tissue Eng Part B Rev, 2008, 14(1): 3-17.
[10]Santerre JP, Woodhouse K, Laroche G, et al. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials[J]. Biomaterials, 2005, 26(35): 7457-7470.
[11]Choi W S, Bae J W, Lim H R, et al. RGD peptide-immobilized electrospun matrix of polyurethane for enhanced endothelial cell affinity[J]. Biomed Mater, 2008, 3(4): 44104.
国家自然科学基金 (81371924, 81572102);广东省自然科学基金(2014A030313276)
/
〈 |
|
〉 |