颈内动脉狭窄对大脑动脉环血流动力学影响的有限元分析

林蔚莘,周毅强,黄学成,李义凯

中国临床解剖学杂志 ›› 2016, Vol. 34 ›› Issue (6) : 672-676.

中国临床解剖学杂志 ›› 2016, Vol. 34 ›› Issue (6) : 672-676. DOI: 10.13418/j.issn.1001-165x.2016.06.015
临床生物力学

颈内动脉狭窄对大脑动脉环血流动力学影响的有限元分析

  • 林蔚莘1, 周毅强1, 黄学成2, 李义凯3
作者信息 +

Hemodynaic of cerebral arterial circle affected by stenosis in ICA: A finite element analysis

  • LIN Wei-shen1, ZHOU Yi-qiang1, HUANG Xue-cheng2, LI Yi-kai3
Author information +
文章历史 +

摘要

目的 大脑动脉环血流变化常与颈内动脉狭窄相联系。本研究试用有限元方法来研究颈内动脉狭窄对大脑动脉环内的血流动力学影响,以此探讨动脉环内交通动脉代偿机制。  方法 采用MIMICS10.0软件及ANSYS14.5软件,建立了一个包括血管和血流在内的流固耦合的三维有限元模型,模拟了健康模型(颈内动脉无狭窄)及各种病理模型(颈内动脉狭窄率分别为15%、 30%、 45%, 60%、 70%、 80% 和90%)。通过监测前交通动脉和后交通动脉内的血流变化,掌握动脉环内血流动力学的改变。  结果 包括血管和血流的流固耦合有限元模型首次得以建立。随着狭窄率增加,前交通动脉与患侧后交通动脉内血流逐渐增多,狭窄率达到90%后,两条血管内血流减少;健侧后交通动脉内血流也全程逐渐增加,但量极小,基本无明显变化。  结论 通过以上的结果可见,随着颈内动脉狭窄程度的加重,大脑动脉环通过前交通动脉与患侧后交通动脉开放达到代偿,狭窄率达到90%后代偿失效,从机制上印证了颈内动脉狭窄与颅内缺血性病变相关。

Abstract

Objective The cerebral arterial circle is usually associated with the internal carotid artery (ICA) stenosis. The finite element method was used to analyze the influence of stenosis on the hemodynamics in the circle and find out the compensatory mechanism of communicating arteries. Methods  A fluid-solid coupling 3D finite element model was created using MIMICS10.0 and ANSYS14.5. The healthy and the diseased (ratios of stenosis include 15%, 30%, 45%, 60%, 70%, 80%, and 90%) situations were simulated. Blood flow was then monitored at the communicating arteries (ACoA,PCoA). Results A fluid-solid coupling 3D finite element model including blood and vessels was created for the first time. Blood flow in ACoA and the right PCoA increased according to the increase of stenosis ratio, but decreased when the stenosis ratio was up to 90%. Blood flow in the left PCoA increased slightly through the whole course. Conclusion The ACoA and PCoA of affected side open gradually to compensate the loss of blood according to the increasing of stenosis ration, and decompensate when the rate was up to 90%. Stenosis in the internal carotid was proved mechanical associate with intracranial ischemic disease.

关键词

大脑动脉环 / 颈内动脉狭窄 / 有限元

Key words

Cerebral arterial circle / Carotid Stenosis / Finite Element Analysis

引用本文

导出引用
林蔚莘,周毅强,黄学成,李义凯. 颈内动脉狭窄对大脑动脉环血流动力学影响的有限元分析[J]. 中国临床解剖学杂志. 2016, 34(6): 672-676 https://doi.org/10.13418/j.issn.1001-165x.2016.06.015
LIN Wei-shen, ZHOU Yi-qiang, HUANG Xue-cheng, LI Yi-kai. Hemodynaic of cerebral arterial circle affected by stenosis in ICA: A finite element analysis[J]. Chinese Journal of Clinical Anatomy. 2016, 34(6): 672-676 https://doi.org/10.13418/j.issn.1001-165x.2016.06.015

参考文献

[1]  Songsaeng D, Geibprasert S, Willinsky R, et al. Impact of anatomical variations of the circle of Willis on the incidence of aneurysms and their recurrence rate following endovascular treatment[J]. Clin Radiol. 2010, 65(11):895-901.
[2]  van Raamt AF, Mali WP, van Laar PJ, et al. The fetal variant of the circle of Willis and its influence on the cerebral collateral circulation[J]. Cerebrovasc Dis. 2006, 22(4):217-224. 
[3] Naveen SR, Bhat V, Karthik GA. Magnetic resonance angiographic evaluation of circle of Willis: A morphologic study in a tertiary hospital set up[J]. Ann Indian Acad Neurol. 2015,18(4):391-397. 
[4]  Fahy P, Malone F, McCarthy E, et al. An in vitro evaluation of emboli trajectories within a three-dimensional physical model of the circle of willis under cerebral blood flow conditions[J]. Ann Biomed Eng. 2015, 43(9): 2265-2278.
[5] Cebral JR,Castro MA,Soto O. Blood-flow models of the circle of Willis from magnetic resonance[J]. J Engineering Mathematics, 2003, 47(3):369-386.
[6] Marie Oshima RT, Toshio Kobayashi. Finite element simulation of blood flow in cerebral artery[J]. Comput Methods Appl. 2001,191:661-71.
[7]  Chen S, Lou H, Guo L, et al. 3-D finite element modelling of facial soft tissue and preliminary application in orthodontics[J]. Comput Methods Biomech Biomed Engin. 2012,15(3):255-261.
[8]  Alnaes MS, Isaksen J, Mardal KA, et al. Computation of hemodynamics in the circle of Willis[J]. Stroke. 2007,38(9):2500-2505. 
[9]  林蔚莘, 金斌, 张美超, 等. 尺桡骨可视化的初步研究[J]. 中国中医骨伤科杂, 2007, 15(2): 33-37
[10] 陈肇辉, 黄文华, 赵卫东, 等. 人体颈部活动度在体测量方法研究[J]. 中国临床解剖学杂志, 2003,21(4): 635-639.
[11]Wu W, Wang WQ, Yang DZ, et al. Stent expansion in curved vessel and their interactions: a finite element analysis[J]. J Biomech, 2007, 40(11):2580-2585.
[12]Ding Guanghong, Q Ko. On hemodynamic of cerebral circulation:a mathematical model of the circle of willis with steady flow[J]. Chinese Journal of biomedical engineering. 1998;17(1):88-96.
[13]Inamasu J, Guiot BH. Intracranial hypotension with spinal pathology[J]. Spine J. 2006 , 6(5): 591-9. 
[14]申娜, 袁奇, 陈珍. Willis 环瞬态血液流体动力特性数值分析[J]. 应用力学学报, 2009, 26(3): 539-545.
[15]Wong DW, Niu W, Wang Y, et al. Finite element analysis of foot and ankle impact injury: risk evaluation of calcaneus and talus fracture[J].  PLoS One. 2016, 11(4):110-118.
[16] Orosz L, Hoksbergen AW, Molnár C, et al. Clinical applicability of a mathematical model in assessing the functional ability of the communicating arteries of the circle of Willis[J]. J Neurol Sci. 2009, 287(1-2):94-99.
[17] FerrÁNdez A, David T, Bamford J, et al. Computational models of blood flow in the circle of willis[J]. Comput Methods Biomech Biomed Engin. 2000, 4(1):1-26.
[18] Moore S1, David T, Chase JG, et al . 3D models of blood flow in the cerebral vasculature[J]. J Biomech. 2006, 39(8):1454-63.
[19] Berkefeld J, Martin JB, Théron JG, et al. Stent impact on the geometry of the carotid bifurcation and the course of the internal carotid artery[J]. Neuroradiology. 2002, 44(1):67-76.
[20] 贾慧霞, 金蓉. 颈动脉粥样硬化斑块影像学诊断方法的研究进展[J]. 国际生物医学工程杂志, 2015, 38(3):183-186.
[21] Yuan Y, Qi L, Luo S. The reconstruction and application of virtual Chinese human female. Comput Methods Programs Biomed. 2008, 92(3):249-256. 

基金

国家自然科学基金( 81273871)


Accesses

Citation

Detail

段落导航
相关文章

/