TLIF后路不同的内固定方式生物力学特性的比较分析

余伟波,梁德,叶林强,黄学成,姚珍松,江晓兵

中国临床解剖学杂志 ›› 2016, Vol. 34 ›› Issue (5) : 551-556.

中国临床解剖学杂志 ›› 2016, Vol. 34 ›› Issue (5) : 551-556. DOI: 10.13418/j.issn.1001-165x.2016.05.015
临床生物力学

TLIF后路不同的内固定方式生物力学特性的比较分析

  • 余伟波1,2, 梁德2, 叶林强1,2, 黄学成1,2, 姚珍松2, 江晓兵2
作者信息 +

The biomechanical effect of transforaminal lumbar interbody fusion with different types of posterior instruments for stabilization

  • YU Wei-bo 1,2,  LIANG De 1,  YE Lin-qiang 1,2, HUANG Xue-cheng 1,2,  YAO Zhen-song 2,  JIANG Xiao-bing 2
Author information +
文章历史 +

摘要

目的 比较3种不同后路经腰椎间孔椎间融合(transforaminal lumbar interbody fusion,TLIF)内固定方式的生物力学特性。  方法 建立正常L3~5有限元模型,在验证其有效性基础上模拟3种不同TLIF后路内固定方式即:单侧或双侧椎弓根螺钉内固定组(Model A和Model B)、单侧+对侧关节突螺钉固定组Model C。分别比较其在生理活动范围(Range of the motion, ROM)下模型的稳定性以及内植物的应力差异。  结果 对所有重构模型,在融合节段(L4~5)的ROM均显著下降,其中以Model B下降最多,屈伸活动减少达18.2%;内植物最大应力出现在Model C,左侧弯时达234.9 MPa;Model B的cage最大应力最小。  结论 后路双侧椎弓根螺钉固定能获得最佳稳定性,且能降低cage下沉及移位的风险;单侧+对侧关节突螺钉亦能提供较好良好的稳定。

Abstract

Objective To investigate the biomechanical effect of transforaminal lumbar interbody fusion (TLIF) with three different types of posterior instruments. Methods A validated L3~5 FE model was modified to simulate three different TLIF finite element modelsat L4~5: unilateral pediclescrew fixation;bilateral pedicle screw fixation; a unilateral pedicle screw fixation supplemented with contralateral facet screw construct. Various biomechanical parameters were evaluated for intact and implanted models in all loading planes. Results When compared with the intact model, all reconstructive models displayed decreased motion at L4~5, and Model B conferred greater stability in flexion-extension (18.2% of intact model). The maximum stress of instruments was found in Model C with 234.9 MPa under left lateral bending. In addition, Model B generated the lowest cage stress. Conclusion The reconstruction with bilateral pedicle screw fixation can gain the optimal stability and decrease posterior instrumentation stress. A unilateral pedicle screw fixation supplemented with contralateral facet screw construct could also gain a relatively good stability.

关键词

经腰椎间孔椎体间融合(TLIF) / 椎弓根螺钉 / 关节突螺钉 / 有限元

Key words

Transforaminal lumbar interbody fusion / Pedicle screw fixation / Contralateral facet screw construct / Finite element analysis

引用本文

导出引用
余伟波,梁德,叶林强,黄学成,姚珍松,江晓兵. TLIF后路不同的内固定方式生物力学特性的比较分析[J]. 中国临床解剖学杂志. 2016, 34(5): 551-556 https://doi.org/10.13418/j.issn.1001-165x.2016.05.015
YU Wei-bo,LIANG De, YE Lin-qiang,HUANG Xue-cheng,YAO Zhen-song, JIANG Xiao-bing. The biomechanical effect of transforaminal lumbar interbody fusion with different types of posterior instruments for stabilization[J]. Chinese Journal of Clinical Anatomy. 2016, 34(5): 551-556 https://doi.org/10.13418/j.issn.1001-165x.2016.05.015

参考文献

[1]  Lowe TG, Tahernia AD, O’Brien MF, et al. Unilateral transforaminal posterior lumbar interbody fusion (TLIF): indications, technique, and 2-year results[J]. J Spinal Disord Tech, 2002, 15(1):31-38.
[2]  Li X, Lv C, Yan T. Unilateral versus bilateral pedicle screw fixation for degenerative lumbar diseases: a meta-analysis of 10 randomized controlled trials[J]. Med Sci Monit, 2015, 21(2):782-790.
[3] Zhang K, Sun W, Zhao CQ, et al. Unilateral versus bilateral instrumented transforaminal lumbar interbody fusion in two-level degenerative lumbar disorders: a prospective randomised study[J]. Int Orthop, 2014(1), 38:111-116.
[4] Bachus K, Brodke D, Droge J. Increasing the stability of unilateral transverse lumbar interbody fusions[J]. Proc Orthop Res Soc, 2004, 29(7):1122.
[5] Slucky A, Brodke D, Droge J. In vivo biomechanical analysis of transverse lumbar fusion techniques[C]. Presented at World Spine Conference II, Chicago, IL, 2003.
[6] Ambati DV, Wright EK, Lehman RA, et al. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study[J]. Spine J, 2015, 15(8):1812-1822.
[7]  Vadapalli S, Sairyo K, Goel VK, et al. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study[J]. Spine (Phila Pa 1976), 2006, 31(26):E992-998.
[8]  李苏皖, 陆斌, 张国桥, 等. 腰椎后路椎间融合内固定有限元模型的建立及内固定物力学分析[J]. 中国临床解剖学杂志, 2014, 32(5): 609-612.
[9] Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint [J]. Spine (Phila Pa 1976), 1989, 14(11):1256-1260.
[10]Chiang MF, Zhong ZC, Chen CS, et al. Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis[J]. Spine (Phila Pa 1976), 2006, 31(19):E682-689.
[11]Dmitriev AE, Gill NW, Kuklo TR, et al. Effect of multilevel lumbar disc arthroplasty on the operative- and adjacent-level kinematics and intradiscal pressures: an in vitro human cadaveric assessment[J]. Spine J, 2008, 8(6):918-925.
[12]Ambati DV, Wright EK, Lehman RA, et al. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study[J]. Spine J, 2015, 15(1):1812-1822.
[13]Harris BM, Hilibrand AS, Savas PE, et al. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine[J]. Spine, 2004, 29(4):E65–70.
[14]Horn EM, Reyes PM, Baek S, et al. Biomechanics of C-7 transfacet screw fixation[J]. J Neurosurg Spine, 2009, 11(3):338–343.
[15]Kuslich SD, Danielson G, Dowdle JD, et al. Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage[J]. Spine (Phila Pa 1976), 2000, 25(20):2656-2662.
[16]Chen CS, Feng CK, Cheng CK, et al. Biomechanical analysis of the disc adjacent to posterolateral fusion with laminectomy in lumbar spine[J]. J Spinal Disord Tech, 2005, 18(1):58-65.

基金

广东省卫生厅医学科研基金(2014B2014175);卫生部医药卫生科技发展研究中心资助课题(W2014ZT256);卫生部医药卫生科技发展研究中心资助课题(W2012ZT0)


Accesses

Citation

Detail

段落导航
相关文章

/