椎体截面的数理学原理分析与脊柱病变的探讨

刘小勇,杨惠林,罗宗平

中国临床解剖学杂志 ›› 2016, Vol. 34 ›› Issue (4) : 439-443.

中国临床解剖学杂志 ›› 2016, Vol. 34 ›› Issue (4) : 439-443. DOI: 10.13418/j.issn.1001-165x.2016.04.017
临床生物力学

椎体截面的数理学原理分析与脊柱病变的探讨

  • 刘小勇1,3, 杨惠林1, 罗宗平2
作者信息 +

The principles of mathematical analysis for vertebral sections and the research of spinal lesions

  • LIU Xiao-yong 1,3, YANG Hui-lin1, LUO Zong-ping2
Author information +
文章历史 +

摘要

目的 测量脊柱椎体终板截面的横径与矢径,利用数理学原理分析脊柱椎体—椎间盘受力传递规律,分析人体脊柱椎体—椎间盘的受力规律与临床病理联系。   方法 测量10具完整脊柱标本C2~S1各椎体上下截面的横径(L)、矢径(H),运用几何学相似原理:椎体/椎间盘上下截面面积变化可近似用数学方程表达,S1/S2=(a*b)/(A*B),S=π/4*L*H,分析椎体上下截面的结构规律;根据椎间盘的结构,利用物理学静水液压原理:F1/F2=S1/S2,分析椎间盘压力变化规律;根据数理学原理推测脊柱椎体—椎间盘的结构与力学规律。  结果 脊柱椎体截面的结构从C2下截面到L4下截面面积呈“S”形曲线递增,L4下截面面积最大,L4下截面到S1上截面递减;椎体—椎间盘间截面横径矢径决定其椎体截面面积、压力系数K,K=L*H。  结论 脊柱椎体—椎间盘自身结构决定了脊柱特有的力学传递与分布规律;建立数理学方程来认识脊柱的结构与力学传递规律能更直观的理解与观察脊柱力学特性与临床脊柱病变规律。

Abstract

Objective To analyze stress transmission rule of spinal vertebral body - intervertebral disc with mathematical and physical principles; to analyze the correlation between stress transmission rule of spinal vertebral body - intervertebral disc and clinical pathology.  Methods  The transverse diameter (L) and sagittal diameter (H) of the upper and lower sections on each vertebral body of C2~S1 in 10 intact spinal specimens were measured. Similarity principle of geometry was used: the area changes of upper and lower sections of vertebral body/intervertebral disc could be expressed in mathematical equations S1/S2=(a*b)/(A*B) and S=π/4*L*H to analyze the structure law of upper and lower sections of vertebral bodies; According to the structure of the intervertebral disc, principle of hydrostatic pressure F1/F2=S1/S2 was used to analyze the law of intervertebral disc pressure change.   Results  With regard to the spinal vertebral body section structure, the area increased in a S-shaped curve from the lower section of C2 to lower section of L4. The section area decreased from the lower section of L4 to the upper section of S1. The transverse diameter and sagittal diameter of the vertebral body - intervertebral disc determined the section area of the vertebral body and pressure coefficient K, K=L*H.    Conclusion   The structure of spinal vertebral body-intervertebral disc itself determines the specific mechanical transmission and distribution characteristics of the spine; Establishment of mathematical equations to recognize the structure and mechanical transmission law of the spine can help more intuitively understand and observe spinal mechanical characteristics and patterns of clinical spinal lesions.

关键词

脊柱 / 椎体 / 椎间盘 / 横径 / 矢径 / 数理学

Key words

Spine / Vertebral body / Intervertebral disc / Transverse diameter / Sagittal diameter / Mathematics and physics

引用本文

导出引用
刘小勇,杨惠林,罗宗平. 椎体截面的数理学原理分析与脊柱病变的探讨[J]. 中国临床解剖学杂志. 2016, 34(4): 439-443 https://doi.org/10.13418/j.issn.1001-165x.2016.04.017
LIU Xiao-yong, YANG Hui-lin, LUO Zong-ping. The principles of mathematical analysis for vertebral sections and the research of spinal lesions[J]. Chinese Journal of Clinical Anatomy. 2016, 34(4): 439-443 https://doi.org/10.13418/j.issn.1001-165x.2016.04.017

参考文献

[1] Chuang SY, Lin LC, Hedman TP. The influence of exogenous cross-linking and compressive creep loading on intradiscal pressure[J]. Biomech Model Mechanobiol, 2010, 9(5): 533-538.
[2]  Deyo RA, Weinstein JN. Low back pain[J]. N Engl J Med, 2001,344(5): 363-370.
[3] Nowroozi BN, Brainerd EL. Regional variation in the mechanical properties of the vertebral column during lateral bending in Morone saxatilis[J]. J R Soc Interface, 2012, 9(75): 2667-2679.
[4] Purmessur D, Guterl CC, Cho SK, et al. Dynamic pressurization induces transition of notochordal cells to a mature phenotype while retaining production of important patterning ligands from development[J]. Arthritis Res Ther, 2013, 15(5): R122.
[5] Handley C, Goldschlager T, Oehme D, et al. Mesenchymal stem cell tracking in the intervertebral disc[J]. World J Stem Cells, 2015,7(1): 65-74.
[6] Woodruff BA, Baron RC. A description of nonfatal spinal cord injury using a hospital-based registry[J]. Am J Prev Med, 1994. 10(1): 10-14.
[7] Adams MA, Dolan P, Hutton WC, et al. Diurnal changes in spinal mechanics and their clinical significance[J]. J Bone Joint Surg Br, 1990, 72(2): 266-270.
[8] Mietsch A, Neidlinger-Wilke C, Schrezenmeier H, et al. Evaluation of platelet-rich plasma and hydrostatic pressure regarding cell differentiation in nucleus pulposus tissue engineering[J]. J Tissue Eng Regen Med, 2013, 7(3): 244-252.
[9]  Vergroesen PP, Kingma I, Emanuel KS, et al. Mechanics and biology in intervertebral disc degeneration: a vicious circle[J]. Osteoarthritis Cartilage, 2015, 23(7):1057-1070.
[10] Le Maitre CL, Fotheringham AP, Freemont AJ, et al. Development of an in vitro model to test the efficacy of novel therapies for IVD degeneration[J]. J Tissue Eng Regen Med, 2009, 3(6): 461-469.
[11] 刘锦波,唐天驷,杨惠林, 等. 中下颈椎体应用解剖测量及临床意义[J]. 中国临床解剖学杂志,2001, 19(1):23-24.
[12]Veres SP, Robertson PA, Broom ND. The morphology of acute disc herniation: a clinically relevant model defining the role of flexion[J]. Spine (Phila Pa 1976), 2009, 34(21): 2288-2296.
[13] Rinkler C, Heuer F, Pedro MT, et al. Influence of low glucose supply on the regulation of gene expression by nucleus pulposus cells and their responsiveness to mechanical loading[J]. J Neurosurg Spine, 2010, 13(4): 535-542.
[14] Le Maitre CL, Frain J, Fotheringham AP, et al. Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure[J]. Biorheology, 2008, 45(5): 563-575.
[15] 徐晖,李健,程立明,等. 椎体成形术后相邻椎体终板应力变化的有限元分析[J]. 中国临床解剖学杂志,2005, 23(3):307-309.


Accesses

Citation

Detail

段落导航
相关文章

/