正常膝关节和人工膝关节髌股关节高屈曲运动特性及其比较分析

王建平,符龙,张雁儒,梁军,张盼盼,王猛

中国临床解剖学杂志 ›› 2016, Vol. 34 ›› Issue (4) : 432-438.

中国临床解剖学杂志 ›› 2016, Vol. 34 ›› Issue (4) : 432-438. DOI: 10.13418/j.issn.1001-165x.2016.04.016
临床生物力学

正常膝关节和人工膝关节髌股关节高屈曲运动特性及其比较分析

  • 王建平1, 符龙1, 张雁儒2, 梁军1, 张盼盼1, 王猛1
作者信息 +

Characteristical analysis and comparison of the high flexion movement of human normal and artificial patellofemoral joints

  • WANG Jian-ping1, FU Long1, ZHANG Yan-ru2, LIANG Jun1, ZHANG Pan-pan1, WANG Meng1
Author information +
文章历史 +

摘要

目的 分析人体正常膝关节和人工膝关节高屈曲活动下髌股关节的运动, 为膝关节髌股关节运动特性研究提供参考。  方法 建立包括膝关节骨组织和主要软组织在内的正常膝关节以及人工膝关节的动态有限元模型,采用三束股四头肌肌力非同步变力加载的方式,对膝关节下蹲运动中髌股关节的运动特性进行研究,并与相关研究结果进行对比分析。   结果 通过有限元分析,获得高屈曲膝关节三维运动的相对运动参数。髌股关节在位移和旋转均呈现出相同的运动趋势,同时,存在局部的差异,在低屈曲时, 人工髌股关节表现出先外倾后内倾的运动趋势,而正常髌股关节表现出持续内倾的运动特性。   结论 通过仿真和对比分析,人体髌股关节的运动数据总体趋势近似,同时存在差异。 对于正常膝关节,差异的原因主要在于髌骨运动各个方向上和不同屈曲度时的约束程度的改变;对于人工膝关节,差异主要来源于膝关节型面和结构的改变,以及坐标系定义、在体和离体差异、负荷加载差异。

Abstract

Objective The purpose of this work was to analyze the kinematics of the human normal and artificial patellofemoral joints during squat. Reference for the study of the patellofemoral joint kinematics of the knee was provided. Method Dynamic finite element (FE) models of knee before and after total knee arthroplasty (TKA), which included the bone tissues and main soft tissues were developed in this research, to simulate the kinematics of patellofemoral joint during squat by the way of three beams quadriceps femoris myodynamia being asynchronously loaded, and were compared with related researches. Result The dynamic 3D relative movement data of patellofemoral joint during deep flexion were obtained. The results showed that the relative motion of the nature knee were similar to that of the TKA knee. At the same time, there has partial difference, in low flexion the TKA knee showed lateral tilt and then medial tilt, but the normal knee showed continued medial tilt. Conclusions Through simulation and comparative analysis, in general, patellofemoral joint kinematics data were approximate. And there was a difference for the normal knee, and the main reason for the difference was the changes of the degree of restraint of the knee patella in each direction and different degrees of flexion; for the artificial knee, the main reasons for the difference were the change of the profile and structure of the knee, simultaneously, related to the difference of the definition of the coordinate system, in vivo and in vitro, and the way of load being loaded.

关键词

髌股关节 / 动态有限元模型 / 非同步变力加载 / 相对运动 / 对比分析

Key words

Patellofemoral joint / Dynamic FE model / Asynchronousinotropism loads / Relative kinematics / Comparative analysis

引用本文

导出引用
王建平,符龙,张雁儒,梁军,张盼盼,王猛. 正常膝关节和人工膝关节髌股关节高屈曲运动特性及其比较分析[J]. 中国临床解剖学杂志. 2016, 34(4): 432-438 https://doi.org/10.13418/j.issn.1001-165x.2016.04.016
WANG Jian-ping, FU Long, ZHANG Yan-ru, LIANG Jun, ZHANG Pan-pan, WANG Meng. Characteristical analysis and comparison of the high flexion movement of human normal and artificial patellofemoral joints[J]. Chinese Journal of Clinical Anatomy. 2016, 34(4): 432-438 https://doi.org/10.13418/j.issn.1001-165x.2016.04.016

参考文献

[1]  Hefzy MS, Kelly BP, Cooke TDV. Kinematics of the knee joint in deep flexion: a radiographic assessment[J]. Med Eng Phys, 1998, 20(4): 302-307.
[2]  Beillas P, Papaioannou G, Tashman S, et al. A new method to investigate in vivo knee behavior using a finite element model of the lower limb[J]. J Biomech, 2004, 37(7): 1019-1030.
[3]  Pena E, Calvo B, Martinez M A, et al. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint[J]. J Biomech, 2006,39(9): 1686-1701.
[4]  Shirazi-Adl A, Mesfar W. Effect of tibial tubercle elevation on biomechanics of the entire knee joint under muscle loads[J]. Clin Biomech, 2007, 22(3): 344-351.
[5]  王建平. 膝关节力学建模与屈曲运动生物力学特性研究[D]. 上海: 上海交通大学, 2010.
[6]  王建平, 吴海山, 王成焘. 人体膝关节动态有限元模型及其在TKR中的应用[J]. 医用生物力学, 2009, 24(5):333-337.
[7]  Wang J, Tao K Li H, et al. Modelling and analysis on biomechanical dynamic characteristics of knee flexion movement under squating [J]. Scientific World Journal, 2014(2014):14.
[8]  Fitzpatrick CK, Baldwin MA, Laz PJ, et al. Development of a statistical shape model of the patellofemoral joint for investigating relationships between shape and function[J]. J Biomech, 2011, 44(13): 2446-2452.
[9]  刘晓敏, 刘杰, 吕劲,等.膝关节后外侧结构生物力学的有限元分析[J].中国组织工程研究.2012(39).
[10] 王建平, 张琳琳,王成焘. 人体膝髌股关节相对运动分析[J]. 上海交通大学学报, 2009, 43(7): 1043-1046.
[11] 王建平, 韩雪莲,季文婷, 等.人体膝胫股关节相对运动的三维图像配准分析[J].生物医学工程学, 2009, 26(6):1336-1340. 
[12] Godest AC, Beaugonin M, Haug E, et al. Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis[J]. J Biomech, 2002, 35(2): 267-275.
[13]Taylor M, Barrett DS. Explicit finite element simulation of eccentric loading in total knee replacement[J]. Clin Orthop Relat Res, 2003, 414: 162-171.
[14] Halloran JP, Petrella AJ, Rullkoetter PJ. Explicit finite element modeling of total knee replacement mechanics[J]. J Biomech, 2005, 38(2): 323-331.
[15] Sharma A, Leszko F, Komistek RD, et al. In vivo patellofemoral forces in high flexion total knee arthroplasty[J]. J Biomech, 2008, 41(3): 642-648.
[16] Bose K, Kanagasuntheram R, Osman MB. Vastus medialis oblique: an anatomic and physiologic study[J]. Orthopedics, 1980, 3(9): 880-883.
[17] Powers CM, Lilley JC, Lee TQ. The effects of axial and multi-plane loading of the extensor mechanism on the patellofemoral joint[J]. Clin Biomech, 1998, 13(8): 616-624.
[18] Amis AA, Senavongse W, Bull AMJ. Patellofemoral kinematics during knee flexion-extension: An in vitro study[J]. J Orthop Res, 2006, 24(12): 2201-2211.
[19] McWalter EJ, Hunter DJ, Wilson DR. The effect of load magnitude on three-dimensional patellar kinematics in vivo[J]. J Biomech, 2010, 43(10): 1890-1897.
[20] Baldwin MA, Clary C, Maletsky LP, et al. Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend[J]. J Biomech, 2009, 42(14): 2341-2348.
[21] Tang TS, MacIntyre NJ, Gill HS, et al. Accurate assessment of patellar tracking using fiducial and intensity-based fluoroscopic techniques[J]. Med Image Anal, 2004, 8(3): 343-351.
[22] Fellows RA, Hill NA, Gill HS, et al. Magnetic resonance imaging for in vivo assessment of three-dimensional patellar tracking[J]. J Biomech, 2005, 38(8): 1643-1652.
[23] Azmy C, Guérard S, Bonnet X, et al. EOS (R) orthopaedic imaging system to study patellofemoral kinematics: Assessment of uncertainty[J]. Orthop Traumatol Surg Res, 2010, 96(1): 28-36.
[24] Heegaard J, Leyvraz PF, Curnier A, et al. The biomechanics of the human patella during passive knee flexion[J]. J Biomech, 1995, 28(11): 1265-1279.

基金

国家自然科学基金重点项目(C100309)


Accesses

Citation

Detail

段落导航
相关文章

/