长期高脂饮食对大鼠下丘脑腹内侧核、弓状核PGC-1α表达的影响
陈金虎,于美佳,王微,管振龙,王艳芹
中国临床解剖学杂志 ›› 2015, Vol. 33 ›› Issue (5) : 558-562.
长期高脂饮食对大鼠下丘脑腹内侧核、弓状核PGC-1α表达的影响
The distribution and significance of PGC-1α neurons in the centre of energy homeostasis in hypothalamus
目的 观察高脂饮食对下丘脑腹内侧核、弓状核PGC-1α表达的影响。 方法 SD大鼠随机分为正常饮食组及高脂饮食组,喂养8周后,采用HE染色法观察肝脏组织脂肪变性情况,采用免疫荧光化学法染色,观察PGC-1α在下丘脑腹内侧核、弓状核的表达变化。 结果 8周后正常饮食组大鼠肝组织的肝索排列整齐,肝索、肝血窦、肝细胞之间均界限分明,细胞核清晰,胞浆均匀,未见肝细胞脂变和坏死;而摄取高脂饮食的大鼠的肝脏组织表现为肝索排列紊乱、肝血窦腔隙极小、细胞界限不清、肝细胞肿胀,胞浆中出现了大小不等的脂肪空泡,有严重脂肪变性特征。正常饮食大鼠下丘脑腹内侧核测定区域面积下PGC-1α的细胞数为199.96±42.95,高脂饮食大鼠腹内侧核PGC-1α的细胞数为(256.08±39.25),二者具有统计差异P<0.05;正常饮食大鼠弓状核PGC-1α的细胞数为(173.25±47.19),高脂饮食大鼠弓状核PGC-1α的细胞数为(200.48±51.44),二者具有统计差异P<0.05。 结论 高脂饮食导致下丘脑腹内侧核、弓状核PGC-1α表达增高,可能与能量代谢平衡调节功能有关。
Objective To investigate the role of high fat diet in the distribution of PGC-1α in SD rat hypothalamus. Methods 12 SD rats were randomly divided two groups, a normal diet group and a high fat diet group. HE staining was used to detect the fatty degeneration of the liver tissue; Immunofluorescence staining was used to observe the change of PGC-1α in the hypothalamusventromedial nucleus, and arcuate nucleus after 8 weeks. Results 8 weeks later, the live tissue of normal diet rats showed that hepatic cord was well organized; the boundary among hepatic cord, liver blood sinus and liver cells was clear; the nucleus were clear and cytoplasmhomogeneous; there was no liver cell lipid and necrosis. But the high fat diet rat live tissues expressed the characteristic of serious fatty degeneration, such as hepatic corddisorganized, liver blood sinus cavity became smaller, the boundary was not clear, live cells swelling with fat vacuoles in the cytoplasm which was not uniform in size. The PGC-1α cell number in the normal diet rat hypothalamusventromedial nucleus determination area was (199.96±42.95), but it was (256.08±39.25) in the high fat diet rat, and there was statistical significance(P<0.05). In the arcuate nucleus the cell number of PGC-1α was (173.25±47.19) in the normal diet rat, but high fat diet made the cell number increased to 200.48±51.44, and there was statistical significance between them( P<0.05). Conclusion High fat diet made the cell number of PGC-1α increased in ventromedial nucleus andarcuate nucleus, PGC-1α may play a role in regulating the energy metabolism balance.
  / PGC-1&alpha / 下丘脑腹内侧核 / 弓状核 / 高脂饮食
PGC-1α / Hypothalamusventromedial nucleus / Arcuate nucleus / High fat diet
[1] Liu C, Lin JD. PGC-1 coactivators in the control of energy metabolism[J]. Acta Biochim Biophys Sin (Shanghai), 2011, 43(4):248-257.
[2] Finley LW, Lee J, Souza A, et al. Skeletal muscle transcriptional coactivator PGC-1alpha mediates mitochondrial, but not metabolic, changes during calorie restriction[J]. Proc Natl Acad Sci U S A, 2012,109(8):2931-2936.
[3] Tritos NA, Mastaitis JW, Kokkotou EG, et al. Characterization of the peroxisome proliferator activated receptor coactivator 1 alpha (PGC 1alpha) expression in the murine brain[J]. Brain Res, 2003, 961(2):255-260.
[4] 徐叔云, 卞如濂, 陈修. 药理实验方法学[M].第3版. 北京: 人民卫生出版社,2002:1201-1206.
[5] Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of food intake and body weight[J]. Nature, 2006, 443(7109):289-295.
[6] Kim HJ, Kobayashi M, Sasaki T, et al. Overexpression of FoxO1 in the hypothalamus and pancreas causes obesity and glucose intolerance[J]. Endocrinology, 2012, 153(2):659-671.
[7] Sisley S, Sandoval D. Hypothalamic control of energy and glucose metabolism[J]. Rev Endocr Metab Disord, 2011, 12(3):219-233.
[8] Thaler JP, Schwartz MW. Minireview: Inflammation and obesity pathogenesis: the hypothalamus heats up[J]. Endocrinology, 2010,151(9):4109-4115.
[9] Lenard NR, Berthoud HR. Central and peripheral regulation of food intake and physical activity: pathways and genes[J]. Obesity (Silver Spring), 2008, 16 (Suppl 3):S11-22.
[10] Nilsson IA, Lindfors C, Schalling M, et al. Anorexia and hypothalamic degeneration[J]. Vitam Horm, 2013, 92:27-60.
[11] Blouet C, Schwartz GJ. Hypothalamic nutrient sensing in the control of energy homeostasis[J]. Behav Brain Res, 2010, 209(1):1-12.
[12] Benani A, Troy S, Carmona MC, et al. Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake[J]. Diabetes, 2007, 56(1):152-160.
[13] Fujita K, Yamafuji M, Nakabeppu Y, et al. Therapeutic approach to neurodegenerative diseases by medical gases: focusing on redox signaling and related antioxidant enzymes[J]. Oxid Med Cell Longev, 2012, 2012:324256.
[14] Ciron C, Lengacher S, Dusonchet J, et al. Sustained expression of PGC-1alpha in the rat nigrostriatal system selectively impairs dopaminergic function[J]. Hum Mol Genet, 2012, 21(8):1861-1876.
[15] Kiebish MA, Young DM, Lehman JJ, et al. Chronic caloric restriction attenuates a loss of sulfatide content in PGC-1alpha-/- mouse cortex: a potential lipidomic role of PGC-1alpha in neurodegeneration[J]. J Lipid Res, 2012, 53(2):273-281.
[16] 钟立, 王邦琼, 李启富, 等. 短期高脂饮食引起大鼠下丘脑PGC1α表达下调[J]. 中华内分泌外科杂志, 2011, 5(4):242-243.
国家自然科学基金(31300897);教育部博士点新教师基金(20121303120005);河北师范大学博士启动基金(L2009B09);河北省卫生厅科研基金(20120222)
/
〈 |
|
〉 |