目的 准确定位枕下肌的神经入肌点(NEP),为枕下肌肌张力增高所致疾病的肌外神经阻滞提供解剖学基础。 方法 24具成人尸体。解剖暴露枕下肌(头后小直肌、头后大直肌、头上斜肌和头下斜肌)的NEP,硫酸钡标记,原位缝合。螺旋CT扫描与三维重建。经皮连接枕外隆突与第7颈椎棘突的曲线为纵向(L)参考线,乳突与第7颈椎棘突的曲线为横向(H)参考线,NEP在项部和相反侧皮肤上的点分别记为P点和P'点,经P点分别向H线和L线作垂线,其交点分别记为PH点和PL点。Syngo系统下确定PH点和PL点分别在H线和L线上的百分位置及NEP的深度。 结果 每块枕下肌(头后小直肌、头后大直肌、头上斜肌和头下斜肌)常只有1个NEP,其NEP的PH分别位于H线上的46.29%、35.85%、28.88%和32.29%处;PL分别位于L线上的27.39%、39.06%、35.06%和40.42%处。NEP的深度分别位于PP'线上的21.21%、24.02%、14.59%和21.44%处。上述百分值均为平均值。左右侧及男女性间的数据比较,P>0.05,无统计学差异。 结论 这些NEPs的体表百分位置和深度的准确界定,利于提高枕下肌张力增高所致疾病的肌外神经阻滞的定位效率与疗效。
Abstract
Objective To accurately localise the nerve entry points (NEPs) of the suboccipital muscles, in order to provide anatomical basis for extramuscular nerve blocks in diseases caused by hypertonia of the suboccipital muscles. Methods Twenty-four adult cadavers were used. The NEPs of the suboccipital muscles (rectus capitis posterior minor muscle, rectus capitis posterior major muscle, obliquus capitis superior muscle and obliquus capitis inferior muscle) were dissected, exposed and labeled with barium sulfate, and then, dissections were sutured back in situ. Spiral CT scan and 3D reconstruction were performed. The curved line connecting the external occipital protuberance and the spinous process of 7th cervical vertebra was designed as the longitudinal reference line (L), and the curved line connecting the mastoid process and the spinous process of 7th cervical vertebra was designed as the horizontal reference line (H). The projection points of NEP on the napex and the opposite side skin were recorded as P point and P' point, respectively. Drawing vertical lines from point P to line H and line L respectively, created intersection points on lines H and L, and they were marked as points PH and PL, respectively. The percentage position of PH and PL on H line and L line respectively and the depth of NEP were determined by Syngo system. Results Each of the four suboccipital muscles (rectus capitis posterior minor muscle, rectus capitis posterior major muscle, obliquus capitis superior muscle and obliquus capitis inferior muscle) usually had only one NEP. The PH position of the NEPs were located at 46.29%, 35.85%, 28.88% and 32.29%, respectively on the H line. The PL were located at 27.39%, 39.06%, 35.06% and 40.42%, respectively on the L line. The depth of NEPs on PP' line were at 21.21%, 24.02%, 14.59% and 21.44%, respectively. The above percentage values were all mean values. There was no statistical difference between left and right side and between male and female (P>0.05). Conclusions The accurate definition of the body surface percentage position and depth of these NEPs is conducive to improve the localization efficiency and efficacy for extramuscular nerve blocks when treating the diseases caused by hypertonia of suboccipital muscle.
关键词
枕下肌 /
  /
  /
神经入肌点 /
  /
  /
神经阻滞 /
  /
  /
定位
Key words
  /
Suboccipital muscles /
  /
  /
Nerve entry points /
  /
  /
  /
Nerve block /
  /
  /
  /
Localization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 姜文斌,李哲,隋鸿锦.颈后肌群与紧张性头痛、偏头痛的关系[J].解剖学杂志, 2018, 41(4): 471-474. DOI: 10.3969/jissn.1001-1633. 2018. 04. 024.
[2] Gutierrez S, Huynh T, Iwanaga J, et al. A Review of the History, Anatomy, and Development of the C1 Spinal Nerve[J]. World Neurosurg, 2020, 135:352-356. DOI: 10.1016/j.wneu.2019.12.024.
[3] Zheng N, Chung BS, Li YL, et al. The myodural bridge complex defined as a new functional structure[J]. Surg Radiol Anat, 2020, 42(2): 143-153. DOI: 10.1007/s00276-019-02340-6.
[4] Yuan XY, Yu SB, Liu C, et al. Correlation between chronic headaches and the rectus capitis posterior minor muscle: A comparative analysis of cross-sectional trail[J]. Cephalalgia, 2017, 37(11):1051-1056. DOI: 10.1177/0333102416664775.
[5] 胡向楠, 胡帅宇, 杨胜波.小腿前群肌神经入肌点定位及在阻滞肌痉挛中的意义[J].中国临床解剖学杂志. 2021, 39(3):247-251. DOI: 10.13418/j.issn.1001-165x.2021.03.001.
[6] 胡帅宇, 卓立凡, 杨胜波.利用神经入肌点定位小腿三头肌痉挛的神经阻滞靶点[J].中国临床解剖学杂志.2017, 35(1):15-18. DOI: 10.13418/j.issn.1001-165x.2017.01.004.
[7] Alonso-Blanco C, de-la-Llave-Rincón AI, Fernández-de-las-Peñas C. Muscle trigger point therapy in tension-type headache[J]. Expert Rev Neurother, 2012, 12(3):315-322.DOI: 10.1586/ern.11.138.
[8] Schramm A, Huber D, Möbius C, et al. Involvement of obliquus capitis inferior muscle in dystonic head tremor[J]. Parkinsonism Relat Disord, 2017, 44:119-123. DOI: 10.1016/j.parkreldis.2017.07.034.
[9] Alabaster K, Fred Bugg M, Splavski B, et al. The suboccipital ligament[J]. J Neurosurg, 2018,128(1): 165-173. DOI: 10.3171/2016.10.JNS162 161.
[10]Abaspour O, Akbari M. Relationship between echogenicity of deep cervical muscles and pain laterality in subjects suffering from cervicogenic headache[J]. Cranio, 2021, 5:1-8. DOI: 10.1080/08869634.2020.1866922.
[11]Fernández-De-Las-Peñas C, Arendt-Nielsen L. Improving understan ding of trigger points and widespread pressure pain sensitivity in tension-type headache patients: clinical implications[J]. Expert Rev Neurother, 2017,17(9): 933-939. DOI: 10.1080/14737175. 2017. 1359 088.
[12] Alonso-Blanco C, de-la-Llave-Rincón AI, Fernández-de-las-Peñas C. Muscle trigger point therapy in tension-type headache[J]. Expert Rev Neurother, 2012, 12(3):315-322. DOI: 10.1586/ern.11.138.
[13] Jost WH, Biering-Sørensen B, Drużdż A, et al. Preferred muscles in cervical dystonia[J]. Neurol Neurochir Pol, 2020, 54(3):277-279. DOI: 10.5603/PJNNS.a2020.0022.
[14] 刘宗良, 陈绍春, 温淑仪, 等.枕颈区软组织的应用解剖研究[J].昆明医学院学报, 2006, 27(5):81-84. DOI: 1003/4706.2006.05. 0081- 04.
[15] Lam K, Wong D, Tam CK, et al. Ultrasound and electrical stimulator-duided obturator nerve block with phenol in the treatment of hip adductor spasticity in long-term care patients: a randomized, triple blind, placebo controlled study[J]. J Am Med Dir Assoc, 2015, 16(3):238-246. DOI:10.1016/j.jamda.2014.10.005.
基金
国家自然科学基金(32260217);贵州省科技计划项目(黔科合基础-ZK[2023]重点056)