Research progress on vertebral cartilage development-related molecules in the pathogenesis of congenital scoliosis

Zhao Xingchen, Ye Yongyu, Dai Jingxing, Yu Tao, Cheng Xing, Yin Dong, Ouyang Jun, Chang Yunbing, Chen Chong

Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (1) : 112-115.

PDF(547 KB)
PDF(547 KB)
Chinese Journal of Clinical Anatomy ›› 2025, Vol. 43 ›› Issue (1) : 112-115. DOI: 10.13418/j.issn.1001-165x.2025.1.18

Research progress on vertebral cartilage development-related molecules in the pathogenesis of congenital scoliosis

  • Zhao Xingchen1, Ye Yongyu1, Dai Jingxing2, Yu Tao1, Cheng Xing1, Yin Dong1, Ouyang Jun2, Chang Yunbing1, Chen Chong1*
Author information +
History +

Abstract

The vertebral body originates from the body segments and is an important part of spine. Its developmental abnormalities are related to various diseases such as congenital scoliosis (CS). During human embryonic development, mesenchymal cells derived from somites differentiate into vertebral cartilage cells and then ossify to form vertebral bodies. During this process, vertebral cartilage development is coordinated and regulated by a variety of molecular signals. However, there is no comprehensive review on the relationship between the development process of vertebral cartilage and the pathogenic factors of CS. Therefore, we summarized the molecular mechanisms related to the development of vertebral cartilage and CS, and elucidated the molecular regulation behind the pathogenic factors of CS, in order to find clinical better methods to treat CS provide theoretical basis and research direction.

Key words

Vertebral Body;  /   / Cartilage Development;  /   /  Congenital Scoliosis;  /   / Signal Molecule / Causative Factor

Cite this article

Download Citations
Zhao Xingchen, Ye Yongyu, Dai Jingxing, Yu Tao, Cheng Xing, Yin Dong, Ouyang Jun, Chang Yunbing, Chen Chong. Research progress on vertebral cartilage development-related molecules in the pathogenesis of congenital scoliosis[J]. Chinese Journal of Clinical Anatomy. 2025, 43(1): 112-115 https://doi.org/10.13418/j.issn.1001-165x.2025.1.18

References

[1]  Hedequist D, Emans J. Congenital scoliosis: a review and update [J]. J Pediatr Orthop, 2007, 27(1): 106-116. DOI: 10.1097/BPO.0b013e31802b4993.
[2]  邱勇. 青少年特发性脊柱侧凸基因学研究和临床治疗的发展现状及前景[J]. 中华外科杂志, 2018, 56(8): 578-582. DOI: 10.3760/cma.j.issn.0529-5815.2018.08.005.
[3]  Christ B, Huang R, Scaal M. Formation and differentiation of the avian sclerotome [J]. Anatomy and Embryology, 2004, 208(5): 333-350. DOI: 10.1007/s00429-004-0408-z.
[4] Hensinger RN.Congenital scoliosis: etiology and associations [J]. Spine, 2009, 34(17): 1745-1750. DOI: 10.1097/BRS.0b013e3181abf69e.
[5] Demoor M, Ollitrault D, Gomez-leduc T, et al. Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction [J]. Biochim Biophys Acta, 2014, 1840(8): 2414-2440. DOI: 10.1016/j.bbagen.2014.02.030.
[6]  Wu N, Wang L, Hu J, et al. A recurrent rare SOX9 variant (M469V) is associated with congenital vertebral malformations [J]. Curr Gene Ther, 2019, 19(4): 242-247. DOI: 10.2174/1566523219666190924120 307.
[7] Liao J, Hu N, Zhou N, et al. Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation [J]. PLoS One,2014, 9(2): e89025. DOI:10.1371/journal. pone.0089025.
[8]  Coleman CM, Tuan RS. Functional role of growth/differentiation factor 5 in chondrogenesis of limb mesenchymal cells [J]. Mech Dev, 2003, 120(7): 823-836. DOI: 10.1016/s0925-4773(03)00067-4.
[9] Wu Y, Zhang H, Tang M, et al. High methylation of lysine acetyltransferase 6B is associated with the Cobb angle in patients with congenital scoliosis [J]. J Transl Med, 2020, 18(1): 210. DOI: 10.1186/s12967-020-02367-z.
[10]Desh H, Gray S L, Horton M J, et al. Molecular motor MYO1C, acetyltransferase KAT6B and osteogenetic transcription factor RUNX2 expression in human masseter muscle contributes to development of malocclusion [J]. Arch Oral Biol, 2014, 59(6): 601-607. DOI: 10.1016/j.archoralbio.2014.03.005.
[11]陈崇, 李政, 陈峰, 等. 维甲酸信号通路与先天性脊柱侧凸体节发育的研究进展 [J]. 中华骨与关节外科杂志, 2018, 11(6): 470-474. DOI: 10.3969/j.issn.2095-9958.2018.06.016.
[12]Long F, Ornitz DM. Development of the endochondral skeleton [J]. Cold Spring Harb Perspect Biol, 2013, 5(1): a008334. DOI: 10.1101/cshperspect.a008334.
[13]Lin M, Zhao S, Liu G, et al. Identification of novel FBN1 variations implicated in congenital scoliosis [J]. J Hum Genet, 2020, 65(3): 221-230. DOI: 10.1038/s10038-019-0698-x.
[14]Wu N, Ming X, Xiao J, et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis [J]. N Engl J Med, 2015, 372(4): 341-350. DOI: 10.1056/NEJMoa1406829.
[15]Longobardi L, O'rear L, Aakula S, et al. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling [J]. J Bone Miner Res, 2006, 21(4): 626-636. DOI: 10.1359/jbmr.051213.
[16]Eivers E, Mccarthy K, Glynn C, et al. Insulin-like growth factor (IGF) signalling is required for early dorso-anterior development of the zebrafish embryo [J]. Int J Dev Biol, 2004, 48(10): 1131-1140. DOI: 10.1387/ijdb.041913ee.
[17]Yan B, Zhang Z, Jin D, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation [J]. Nat Commun, 2016, 7: 11151. DOI: 10.1038/ncomms11151.
[18]Chen C, Tan H, Bi J, et al. Identification of competing endogenous RNA regulatory networks in vitamin A deficiency-induced congenital scoliosis by transcriptome sequencing analysis [J]. Cell Physiol Biochem, 2018, 48(5): 2134-2146. DOI: 10.1159/000492556.
[19]Iwahashi S, Lyu J, Tokumura K, et al. Conditional inactivation of the L-type amino acid transporter LAT1 in chondrocytes models idiopathic scoliosis in mice [J]. J Cell Physiol, 2022, 237(11): 4292-302. DOI: 10.1002/jcp.30883.
[20]Skórzewska A, Grzymislawska M, Bruska M, et al. Ossification of the vertebral column in human foetuses: histological and computed tomography studies [J]. Folia Morphol (Warsz), 2013, 72(3): 230-238. DOI: 10.5603/fm.2013.0038.
[21]Rebello D, Wohler E, Erfani V, et al. COL11A2 as a candidate gene for vertebral malformations and congenital scoliosis [J]. Human Molecular Genetics, 2023, 32(19): 2913-2928. DOI: 10.1093/hmg/ddad117.
[22]Akiyama H, Lyons J P, Mori-akiyama Y, et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation [J]. Genes Dev, 2004, 18(9): 1072-1087. DOI: 10.1101/gad.1171104.
[23]Zheng Y, Shen P, Tong M, et al. WISP2 downregulation inhibits the osteogenic differentiation of BMSCs in congenital scoliosis by regulating Wnt/β-catenin pathway [J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(7): 166783. DOI: 10.1016/j.bbadis.2023.166783.
[24]Ishiwata S, Iizuka H, Sonoda H, et al. Upregulated miR-224-5p suppresses osteoblast differentiation by increasing the expression of Pai-1 in the lumbar spine of a rat model of congenital kyphoscoliosis [J]. Mol Cell Biochem, 2020, 475(1-2): 53-62. DOI: 10.1007/s11010-020-03859-8.
[25]Somony A, Carreon LY, H Jmark K, et al. Concordance rates of adolescent idiopathic scoliosis in a danish twin population [J]. Spine (Phila Pa 1976), 2016, 41(19):1503-1507. DOI: 10.1097/brs. 00000000 00001681.
[26]Vink CP, Ockeloen CW, Ten Kate S, et al. Variability in dentofacial phenotypes in four families with WNT10A mutations [J]. Eur J Hum Genet, 2014, 22(9): 1063-1070. DOI: 10.1038/ejhg.2013.300.
[27]Kwon H, Paschos NK, HU JC, et al. Articular cartilage tissue engineering: the role of signaling molecules [J]. Cell Mol Life Sci, 2016, 73(6): 1173-1194. DOI: 10.1007/s00018-015-2115-8.
[28]Davidson D, Blanc A, Filion D, et al. Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis [J]. J Biol Chem, 2005, 280(21): 20509-20515. DOI: 10.1074/jbc.M410148200.
[29]Wang S, Chai X, Yan Z, et al. Novel FGFR1 variants are associated with congenital scoliosis [J]. Genes (Basel), 2021, 12(8):1226. DOI: 10.3390/genes12081126.
PDF(547 KB)

Accesses

Citation

Detail

Sections
Recommended

/