Research status and prospect of 3D printing in spinal cord injury repair

Kong Yueying, Wang Yilin, Zhao Hong, Tan Sijie, Huang Wenhua

Chinese Journal of Clinical Anatomy ›› 2024, Vol. 42 ›› Issue (4) : 480-483.

PDF(533 KB)
PDF(533 KB)
Chinese Journal of Clinical Anatomy ›› 2024, Vol. 42 ›› Issue (4) : 480-483. DOI: 10.13418/j.issn.1001-165x.2024.4.22

Research status and prospect of 3D printing in spinal cord injury repair

  • Kong Yueying1, Wang Yilin2, Zhao Hong3, Tan Sijie1, Huang Wenhua1,2*
Author information +
History +

Cite this article

Download Citations
Kong Yueying, Wang Yilin, Zhao Hong, Tan Sijie, Huang Wenhua. Research status and prospect of 3D printing in spinal cord injury repair[J]. Chinese Journal of Clinical Anatomy. 2024, 42(4): 480-483 https://doi.org/10.13418/j.issn.1001-165x.2024.4.22

References

[1] Arber S, Costa RM. Connecting neuronal circuits for movement [J]. Science (New York, NY), 2018, 360(6396): 1403-1404. DOI:10.1126/science.aat5994.
[2]  赵兴昌, 宋世强, 何峰, 等. 生物材料支架在治疗脊髓损伤中的应用[J].中国组织工程研究, 2022, 26(28):4562-4568. 
[3] Venkatesh K, Ghosh SK, Mullick M, et al. Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications [J]. Cell and tissue research, 2019, 377(2): 125-151. DOI:10.1007/s00441-019-03039-1.
[4]  王仲楠, 董大明. 组织工程支架在脊髓损伤修复中的研究进展[J].神经损伤与功能重建. 2022, 17(2): 103-106. DOI:10.16780/j.cnki.sjssgncj.20201242.
[5]  Ashammakhi N, Kim HJ, Ehsanipour A, et al. Regenerative Therapies for Spinal Cord Injury [J]. Tissue Eng Part B Rev, 2019, 25(6): 471-491. DOI:10.1089/ten.TEB.2019.0182.
[6]  Liu S, Xie YY, Wang B. Role and prospects of regenerative biomaterials in the repair of spinal cord injury [J]. Neural Regen Res, 2019, 14(8): 1352-1363. DOI:10.4103/1673-5374.253512.
[7]  田婷, 李晓光. 脊髓损伤再生修复中的问题与挑战[J].中国组织工程研究, 2021, 25(19): 3039-3048. 
[8] Yuan TY, Zhang J, Yu T, et al. 3D Bioprinting for Spinal Cord Injury Repair [J]. Front Bioeng Biotechnol, 2022, 10:847344. DOI:10.3389/fbioe.2022.847344.
[9] Ahuja CS, Nori S, Tetreault L, et al. Traumatic Spinal Cord Injury-Repair and Regeneration [J]. 2017, 80(3S): S9-S22. DOI:10.1093/neuros/nyw080.
[10]Joung D, Lavoie NS, Guo SZ, et al. 3D Printed Neural Regeneration Devices [J]. Adv Funct Mater, 2020, 30(1): 10.1002/adfm.201906237 DOI:10.1002/adfm.201906237.
[11]詹佳楠, 杨洋, 黄文华. 3D打印技术在康复支具制作的应用研究[J].中国医学物理学杂志, 2022, 39(10): 1310-1312. 
[12]陆声, 辛欣, 黄文华, 等. 3D打印骨科手术导板的临床应用进展[J].南方医科大学学报, 2020, 40(8): 1220-1224. 
[13]黄文华. 生物3D打印在器官再造中的前沿热点和研究进展[J].器官移植,2022, 13(2): 161-168. 
[14]陆声, 罗浩天, 陈家瑜, 等. 3D打印应用于膝关节骨缺损修复重建1例 [J]. 中国临床解剖学杂志, 2021, 39(6): 732-737. DOI:10.13418/j.issn.1001-165x.2021.06.020.
[15]Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue engineering [J]. Theranostics, 2021, 11(16): 7948-7969. DOI:10.7150/thno.61621.
[16]Klebe RJ. Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues [J]. Experimental cell research, 1988, 179(2): 362-373. DOI:10.1016/0014-4827(88)90275-3.
[17]Gu Z, Fu J, Lin H, et al. Development of 3D bioprinting: From printing methods to biomedical applications [J]. Asian J Pharm Sci, 2020, 15(5): 529-557. DOI:10.1016/j.ajps.2019.11.003.
[18]杨鑫, 荔志云. 3D打印技术在神经外科临床治疗中的应用进展[J].海南医学, 2022, 33(19): 2564-2567. 
[19]Bedir T, Ulag S, Ustundag CB, et al. 3D bioprinting applications in neural tissue engineering for spinal co rd injury repair [J]. Materials science & engineering C, Materials for biological applicati ons, 2020,110:110741. DOI:10.1016/j.msec.2020.110741.
[20]Chung JJ, Im H, Kim S H, et al. Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine [J]. Front Bioeng Biotechnol, 2020, 8:586406. DOI:10.3389/fbioe.2020.586406.
[21]Xiao Z, Tang F, Zhao Y, et al. Significant Improvement of Acute Complete Spinal Cord Injury Patients Diagnosed by a Combined Criteria Implanted with NeuroRegen Scaffolds and Mesenchymal Stem Cells [J]. Cell Transplant, 2018, 27(6): 907-915. DOI:10.1177/0963689718766279.
[22]Wang L, Wu Y, Hu T, et al. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation [J]. Acta Biomater, 2019, 96:175-187. DOI:10.1016/j.actbio.2019.06.035.
[23]Silva NA, Sousa N, Reis RL, et al. From basics to clinical: a comprehensive review on spinal cord injury [J]. Prog Neurobiol, 2014, 114:25-57. DOI:10.1016/j.pneurobio.2013.11.002.
[24]Ganau M, Zewude R, Fehlings M. Functional Anatomy of the Spinal Cord: Treatment Approaches and Options [M]. 2019: 3-12.
[25]Ge H, Xue X, Xian J, et al. Ferrostatin-1 Alleviates White Matter Injury Via Decreasing Ferroptosis Following Spinal Cord Injury [J]. Mol Neurobiol, 2022, 59(1): 161-176. DOI:10.1007/s12035-021-02571-y.
[26]Bae HG, Kim TK, Suk HY, et al. White matter and neurological disorders [J]. Archives of pharmacal research, 2020, 43(9): 920-931. DOI:10.1007/s12272-020-01270-x.
[27]Jiang JP, Liu XY, Zhao F, et al. Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury [J]. Neural Regen Res, 2020, 15(5): 959-968. DOI:10.4103/1673-5374.268974.
[28]Li XH, Zhu X, Liu XY, et al. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats [J]. J Mater Sci Mater Med, 2021, 32(4): 31. DOI:10.1007/s10856-021-06500-2.
[29]Li X, Liu D, Xiao Z, et al. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation [J]. Biomaterials, 2019, 197:20-31. DOI:10.1016/j.biomaterials.2019.01.012.
[30]Koffler J, Zhu W, Qu X, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair [J]. Nat Med, 2019, 25(2): 263-269. DOI:10.1038/s41591-018-0296-z.
[31]Assinck P, Duncan G J, Hilton B J, et al. Cell transplantation therapy for spinal cord injury [J]. Nat Neurosci, 2017, 20(5): 637-647. DOI:10.1038/nn.4541.
[32]Kadoya K, Lu P, Nguyen K, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration [J]. Nat Med, 2016, 22(5): 479-487. DOI:10.1038/nm.4066.
[33]Knowlton S, Anand S, Shah T, et al. Bioprinting for Neural Tissue Engineering [J]. Trends in neurosciences, 2018, 41(1): 31-46. DOI:10.1016/j.tins.2017.11.001.
[34]Joung D, Truong V, Neitzke C C, et al. 3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds [J]. Adv Funct Mater, 2018, 28(39):1801850. DOI:10.1002/adfm.201801850.
[35]Wang J, Kong X, Li Q, et al. The spatial arrangement of cells in a 3D-printed biomimetic spinal cord promotes directional differentiation and repairs the motor function after spinal cord injury [J]. Biofabrication, 2021,13(4): 10.1088/758-5090/ac0c5f.DOI:10.1088/1758-5090/ac0c5f.
[36]Bradbury E J, Burnside E R. Moving beyond the glial scar for spinal cord repair [J]. Nat Commun, 2019, 10(1): 3879. DOI:10.1038/s41467-019-11707-7.
[37]Sun Y, Yang C, Zhu X, et al. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury [J]. J Biomed Mater Res A, 2019, 107(9): 1898-1908. DOI:10.1002/jbm.a.36675.
[38]Chen C, Zhao ML, Zhang RK, et al. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats [J]. J Biomed Mater Res A, 2017, 105(5): 1324-1332. DOI:10.1002/jbm.a.36011.
[39]Nori S, Nakamura M, Okano H. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy [J]. Prog Brain Res, 2017,231:33-56. DOI:10.1016/bs.pbr.2016.12.007. 
[40]Yang Y, Fan Y, Zhang H, et al. Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury [J]. Biomaterials, 2021, 269:120479. DOI:10.1016/j.biomaterials.2020.120479.
[41]Ahuja CS, Mothe A, Khazaei M, et al. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury [J]. Stem Cells Transl Med, 2020, 9(12): 1509-1530. DOI:10.1002/sctm.19-0135.
[42]Wang B, Liu S, Xie YY, et al. A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury [J]. Neural Regen Res, 2021, 16(11): 2284-2292 DOI:10.4103/1673-5374.310698.
[43]de Freria CM, Van Niekerk E, Blesch A, et al. Neural Stem Cells: Promoting Axonal Regeneration and Spinal Cord Connectivity [J]. Cells, 2021, 10(12): 3296 . DOI:10.3390/cells10123296.
[44]Zarepour A, Hooshmand S, Gokmen A, et al. Spinal Cord Injury Management through the Combination of Stem Cells and Implantable 3D Bioprinted Platforms [J]. Cells, 2021, 10(11):3189. DOI:10.3390/cells10113189.
[45]Liu X, Hao M, Chen Z, et al. 3D bioprinted neural tissue constructs for spinal cord injury repair [J]. Biomaterials, 2021, 272:120771. DOI:10.1016/j.biomaterials.2021.120771.
[46] Zhu W, George JK, Sorger VJ, et al. 3D printing scaffold coupled with low level light therapy for neural tissue regeneration [J]. Biofabrication, 2017, 9(2): 025002. DOI:10.1088/1758-5090/aa6999.
[47]Liu S, Yang H, Chen D, et al. Three-dimensional bioprinting sodium alginate/gelatin scaffold combined with neural stem cells and oligodendrocytes markedly promoting nerve regeneration after spinal cord injury [J]. Regenerative biomaterials,2022, 9:rbac038. DOI:10.1093/rb/rbac038.
[48]Li Y, Cao X, Deng W, et al. 3D printable Sodium alginate-Matrigel (SA-MA) hydrogel facilitated ectomesenchymal stem cells (EMSCs) neuron differentiation [J]. J Biomater Appl, 2021, 35(6): 709-719. DOI:10.1177/0885328220961261.
[49]Chen C, Xu HH, Liu XY, et al. 3D printed collagen/silk fibroin scaffolds carrying the secretome of human umbilical mesenchymal stem cells ameliorated neurological dysfunction after spinal cord injury in rats [J]. Regenerative biomaterials, 2022, 9:rbac014. DOI:10.1093/rb/rbac014.
[50]Kakizawa S. Chapter 41 - Neurotrophin family [M]// ANDO H, UKENA K, NAGATA S. Handbook of Hormones (Second Edition). San Diego; Academic Press. 2021: 471-473.
[51]Rocco ML, Soligo M, Manni L, et al. Nerve Growth Factor: Early Studies and Recent Clinical Trials [J]. Curr Neuropharmacol, 2018, 16(10): 1455-1465. DOI:10.2174/1570159X16666180412092859.
[52]Liu K P, Ma W, Li C Y, et al. Neurotrophic factors combined with stem cells in the treatment of sciatic nerve injury in rats: a meta-analysis [J]. Bioscience reports, 42(1): BSR20211399. DOI:10.1042/BSR20211399.
[53]杨璇,李宪,张鹏, 等.被动运动对脊髓损伤大鼠后肢运动功能及骨骼肌的影响 [J]. 中国临床解剖学杂志, 2018, 36(3): 299-303. DOI:10.13418/j.issn.1001-165x.2018.03.012.
[54]Liu X, Chen C, Xu HH, et al. Integrated printed BDNF/collagen/chitosan scaffolds with low temperature extrusion 3D printer accelerated neural regeneration after spinal cord injury [J]. Regen Biomater, 2021, 8(6): rbab047. DOI:10.1093/rb/rbab047.
[55] Cheng H, Huang Y, Yue H, et al. Electrical Stimulation Promotes Stem Cell Neural Differentiation in Tissue Engineering [J]. Stem Cells Int, 2021, 2021:6697574. DOI:10.1155/2021/6697574.
[56]Heo DN, Lee SJ, Timsina R, et al. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering [J]. Mater Sci Eng C Mater Biol Appl, 2019, 99:582-590. DOI:10.1016/j.msec.2019.02.008.
[57]Kuzmenko V, Karabulut E, Pernevik E, et al. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines [J]. Carbohydr Polym,2018,189:22-30. DOI:10.1016/j.carbpol.2018. 01. 097
PDF(533 KB)

Accesses

Citation

Detail

Sections
Recommended

/