Three-dimensional restoration research driven by craniomaxillofacial dataset

Jin Zewen, Zhang Xinkang, Wang Wensheng, Chen Xinrong

Chinese Journal of Clinical Anatomy ›› 2024, Vol. 42 ›› Issue (4) : 378-381.

PDF(1532 KB)
PDF(1532 KB)
Chinese Journal of Clinical Anatomy ›› 2024, Vol. 42 ›› Issue (4) : 378-381. DOI: 10.13418/j.issn.1001-165x.2024.4.04

Three-dimensional restoration research driven by craniomaxillofacial dataset

  • Jin Zewen1,2, Zhang Xinkang1,2, Wang Wensheng1,2, Chen Xinrong1,2*
Author information +
History +

Abstract

Objective To propose a learning-based automatic restoration method for craniomaxillofacial  defects, which learning from a self-constructed dataset to automatically generate the shape of the defective parts, and providing reference for the restoration of complex craniomaxillofacial  structures. Methods Based on the head CT data, 125 cases of skull data were reconstructed and annotated. Each case was categorized into 21 defect classes. Various techniques were used for data preprocessing, including image registration and threshold filtering. A novel craniomaxillofacial  automatic restoration technique was introduced to generate shapes for the defective portions. Results The proposed method achieves the state-of-the-art results on the CMF Defects dataset, which can reconstruct shapes that combine aesthetics and protective functionality.  Conclusions Craniomaxillofacial bone have diverse shapes and complex anatomical structures. This study, combined with deep learning and data-driven methods, can effectively generate the generation of craniomaxillofacial bone defects, providing a reliable foundation for preoperative planning and intraoperative procedures in craniomaxillofacial restoration surgery.

Key words

Craniomaxillofacial restoration;  /  Image processing;  /  3D reconstruction; Deep learning

Cite this article

Download Citations
Jin Zewen, Zhang Xinkang, Wang Wensheng, Chen Xinrong. Three-dimensional restoration research driven by craniomaxillofacial dataset[J]. Chinese Journal of Clinical Anatomy. 2024, 42(4): 378-381 https://doi.org/10.13418/j.issn.1001-165x.2024.4.04

References

[1]  邱蔚六.口腔颌面部缺损修复重建的现状和展望[J].中国修复重建外科杂志, 2005,19(10):769-772. CNKI:SUN:ZXCW.0.2005-10-000.
[2]  Li J, Pepe A, Gsaxner C, et al. An online platform for automatic skull defect restoration and cranial implant design[C]. Medical Imaging 2021: Image-Guided Procedures, Robotic Interventions, and Modeling. SPIE, 2021, 11598: 472-479. DOI: 10.1117/12.2580719.
[3]  Oh JH. Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing[J]. Maxillofac Plast Reconstr Surg, 2018, 40(1):2. DOI:10.1186/s40902-018-0141-9.
[4]  Park SH, Han K, Jang HY, et al. Methods for clinical evaluation of artificial intelligence algorithms for medical diagnosis[J]. Radiology, 2023, 306(1): 20-31. DOI: 10.1148/radiol.220182.
[5]  Cui Z, Fang Y, Mei L, et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images[J]. Nat Commun, 2022, 13(1):2096. DOI: 10.1038/s41467-022-29637-2. 
[6]  Li J, Gsaxner C, Pepe A, et al. Synthetic skull bone defects for automatic patient-specific craniofacial implant design[J]. Sci Data, 2021, 8(1):36. DOI: 10.1038/s41597-021-00806-0.
[7]  Tingaud-Sequeira A, Trimouille A, Sagardoy T, et al. Oculo-auriculo-vertebral spectrum: new genes and literature review on a complex disease[J]. J Med Genet,2022,59(5):417-427. DOI: 10.1136/jmedgenet- 2021-108219.
[8]  Marszałek-Kruk BA, Wójcicki P, Dowgierd K, et al. Treacher Collins syndrome: genetics, clinical features and management[J]. Genes, 2021, 12(9):1392. DOI: 10.3390/genes12091392.
[9]  Hegdé J, Tustison N J, Parker W T, et al. An anatomical template for the normalization of medical images of adult human hands[J]. Diagnostics, 2023, 13(12): 2010. DOI:10.3390/diagnostics13122010.
[10]Li J, Von Campe G, Pepe A, et al. Automatic skull defect restoration and cranial implant generation for cranioplasty[J]. Med Image Anal, 2021, 73: 102171. DOI:10.1016/j.media.2021.102171.
[11]Zhang J, Gao Y, Wang L, et al. Automatic craniomaxillofacial landmark digitization via segmentation-guided partially-joint regression forest model and multiscale statistical features[J]. IEEE Trans Biomed Eng, 2015, 63(9): 1820-1829. DOI: 10.1109/TBME.2015.2503421.
[12]Chen X, Lian C, Deng H H, et al. Fast and accurate craniomaxillofacial landmark detection via 3D faster R-CNN[J]. IEEE Trans Med Imaging, 2021, 40(12): 3867-3878. DOI: 10.1109/TMI.2021.3099509.
[13]Silva TP, Hughes MM, Menezes LS, et al. Artificial intelligence-based cephalometric landmark annotation and measurements according to Arnett’s analysis: can we trust a bot to do that [J]? Dentomaxillofac Radiol, 2022, 51(6): 20200548. DOI: 10.1259/dmfr.20200548.
[14]Ma Q, Kobayashi E, Fan B, et al. Machine‐learning‐based approach for predicting postoperative skeletal changes for orthognathic surgical planning[J]. Int J Med Robot, 2022, 18(3): e2379. DOI: 10.1002/rcs.2379. 
[15]Tanikawa C, Yamashiro T. Development of novel artificial intelligence systems to predict facial morphology after orthognathic surgery and orthodontic treatment in Japanese patients[J]. Sci Rep, 2021, 11(1): 15853. DOI: 10.1038/s41598-021-95002-w.
[16]Jong L. On the persistence of race: Unique skulls and average tissue depths in the practice of forensic craniofacial depiction[J]. Soc Stud Sci, 2023, 53(6): 891-915. DOI: 10.1177/03063127221112073.
[17]Zheng X, Ding S, Mei Q, et al. A cross-sectional study: correlation of forehead morphology and dentoskeletal malocclusion in Chinese people[J]. BMC Oral Health, 2024, 24(1): 50. DOI: 10.1186/s12903-023-03795-1. 
[18]Chen X, Xu L, Li X, et al. Computer-aided implant design for the restoration of cranial defects[J]. Sci Rep, 2017, 7(1): 4199. DOI: 10.1038/s41598-017-04454-6.
PDF(1532 KB)

Accesses

Citation

Detail

Sections
Recommended

/