The research progress on the application and engineering approaches of circRNA encoded ploypeptides

Du Kunshuo, Yang Tianyi, Jia Shuhui, Wang Fanglin, Fan Jun

Chinese Journal of Clinical Anatomy ›› 2024, Vol. 42 ›› Issue (3) : 356-358.

PDF(495 KB)
PDF(495 KB)
Chinese Journal of Clinical Anatomy ›› 2024, Vol. 42 ›› Issue (3) : 356-358. DOI: 10.13418/j.issn.1001-165x.2024.3.21

The research progress on the application and engineering approaches of circRNA encoded ploypeptides

  • Du Kunshuo1, 2, Yang Tianyi1, 3, Jia Shuhui1, 2, Wang Fanglin1, Fan Jun1*
Author information +
History +

Key words

circRNA /   /   /   / circRNA translation /   /   /   / Engineering

Cite this article

Download Citations
Du Kunshuo, Yang Tianyi, Jia Shuhui, Wang Fanglin, Fan Jun. The research progress on the application and engineering approaches of circRNA encoded ploypeptides[J]. Chinese Journal of Clinical Anatomy. 2024, 42(3): 356-358 https://doi.org/10.13418/j.issn.1001-165x.2024.3.21

References

[1] Kristensen LS, Jakobsen T, Hager H, et al. The emerging roles of circRNAs in cancer and oncology[J]. Nat Rev Clin Oncol, 2022, 19(3): 188-206. DOI: 10.1038/s41571-021-00585-y.
[2] Long F, Lin Z, Li L, et al. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer[J]. Mol Cancer, 2021, 20(1): 26. DOI: 10.1186/s12943-021-01318-6.
[3] Lee AS, Kranzusch PJ, Doudna JA, et al. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation[J]. Nature, 2016, 536(7614): 96-99. DOI: 10.1038/nature18954.
[4]  Liberman N, Gandin V, Svitkin YV, et al. DAP5 associates with eIF2beta and eIF4AI to promote Internal Ribosome Entry Site driven translation[J]. Nucleic Acids Res,2015,43(7):3764-3775. DOI: 10.1093/ nar/gkv205.
[5] Wang Y, Wu C, Du Y, et al. Expanding uncapped translation and emerging function of circular RNA in carcinomas and noncarcinomas[J]. Mol Cancer, 2022, 21(1): 13. DOI: 10.1186/s12943-021-01484-7.
[6]  Ali MM, Li F, Zhang Z, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine[J]. Chem Soc Rev, 2014, 43(10): 3324-3341. DOI: 10.1039/c3cs60439j.
[7]  Warminski M, Kowalska J, Jemielity J. Solid-phase synthesis of RNA 5'-azides and their application for labeling, ligation, and cyclization via click chemistry[J]. Curr Protoc Nucleic Acid Chem, 2020, 82(1): e112. DOI: 10.1002/cpnc.112.
[8]  Tang X, Guo M, Ding P, et al. BUB1B and circBUB1B_544aa aggravate multiple myeloma malignancy through evoking chromosomal instability[J]. Signal Transduct Target Ther, 2021, 6(1): 361. DOI: 10.1038/s41392-021-00746-6.
[9]  Gao X, Xia X, Li F, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling[J]. Nat Cell Biol, 2021, 23(3): 278-291. DOI: 10.1038/s41556-021-00639-4.
[10]Lu Y, Li Z, Lin C, et al. Translation role of circRNAs in cancers[J]. J Clin Lab Anal, 2021, 35(7): e23866. DOI: 10.1002/jcla.23866.
[11]Kim D, Han S, Ji Y, et al. Multimeric RNAs for efficient RNA-based therapeutics and vaccines[J]. J Control Release, 2022, 345: 770-785. DOI: 10.1016/j.jconrel.2022.03.052.
[12]Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. DOI: 10.1038/s41576-019-0158-7.
[13]Li H, Peng K, Yang K, et al. Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies[J]. Theranostics, 2022, 12(14): 6422-6436. DOI: 10.7150/thno.77350.
[14]Qu L, Yi Z, Shen Y, et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants[J]. Cell, 2022, 185(10): 1728e16-1744e16. DOI: 10.1016/j.cell.2022.03.044.
[15]Wang T, Liu Z, She Y, et al. A novel protein encoded by circASK1 ameliorates gefitinib resistance in lung adenocarcinoma by competitively activating ASK1-dependent apoptosis[J]. Cancer Lett, 2021, 520: 321-331. DOI: 10.1016/j.canlet.2021.08.007.
[16]Suzuki H, Zuo Y, Wang J, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing[J]. Nucleic Acids Res, 2006, 34(8): e63. DOI: 10.1093/nar/gkl151.
[17]Xu Z, Li P, Fan L, et al. The potential role of circRNA in tumor immunity regulation and immunotherapy[J]. Front Immunol, 2018, 9: 9. DOI: 10.3389/fimmu.2018.00009.
[18]Liu X, Zhang Y, Zhou S, et al. Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines[J]. J Control Release, 2022, 348: 84-94. DOI: 10.1016/j.jconrel.2022.05.043.
[19]Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production[J]. Genes Dev, 2014, 28(20): 2233-2247. DOI: 10.1101/gad.251926.114.
[20]Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6): 1125-1134. DOI: 10.1016/j.cell.2015.02.014.
[21]Qi Y, Han W, Chen D, et al. Engineering circular RNA regulators to specifically promote circular RNA production[J]. Theranostics, 2021, 11(15): 7322-7336. DOI: 10.7150/thno.56990.
[22]Wesselhoeft RA, Kowalski PS, Anderson DG. Engineering circular RNA for potent and stable translation in eukaryotic cells[J]. Nat Commun, 2018, 9(1): 2629. DOI: 10.1038/s41467-018-05096-6.
[23]Wesselhoeft RA, Kowalski PS, Parker-Hale FC, et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo[J]. Mol Cell, 2019, 74(3): 508e4-520e4. DOI: 10.1016/j.molcel.2019.02.015.
[24]Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications[J]. Cell, 2022, 185(12): 2016-2034. DOI: 10.1016/j.cell.2022.04.021.
[25]Chen R, Wang SK, Belk JA, et al. Engineering circular RNA for enhanced protein production[J]. Nat Biotechnol, 2023, 41(2): 262-272. DOI: 10.1038/s41587-022-01393-0.
PDF(495 KB)

Accesses

Citation

Detail

Sections
Recommended

/