Research progress of the application of nanometer materials in the treatment of bone metastasis of lung cancer

Qian Xin, Li Mei, Ma Limin, Zhang Yu

Chinese Journal of Clinical Anatomy ›› 2024, Vol. 42 ›› Issue (2) : 229-232.

PDF(1656 KB)
PDF(1656 KB)
Chinese Journal of Clinical Anatomy ›› 2024, Vol. 42 ›› Issue (2) : 229-232. DOI: 10.13418/j.issn.1001-165x.2024.2.20

Research progress of the application of nanometer materials in the treatment of bone metastasis of lung cancer

  • Qian Xin, Li Mei,Ma Limin,Zhang Yu
Author information +
History +

Cite this article

Download Citations
Qian Xin, Li Mei, Ma Limin, Zhang Yu. Research progress of the application of nanometer materials in the treatment of bone metastasis of lung cancer[J]. Chinese Journal of Clinical Anatomy. 2024, 42(2): 229-232 https://doi.org/10.13418/j.issn.1001-165x.2024.2.20

References

[1]  Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA  Cancer J Clin, 2021, 71(3): 209-249. DOI:10.3322/caac.21660.
[2]  Fornetti J, Welm AL, Stewart SA. Understanding the bone in cancer metastasis[J]. J Bone Miner Res, 2018, 33(12): 2099-2113. DOI:10.1002/jbmr.3618.
[3]  Shupp AB, Kolb AD, Mukhopadhyay D, et al. Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts[J]. Cancers, 2018, 10(6): 182. DOI:10.3390/cancers10060182.
[4]  Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world[J]. Biomed Pharmacother, 2018, 97: 1521-1537. DOI:10.1016/j.biopha.2017.11.026.
[5]  Raj S, Khurana S, Choudhari R, et al. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy[J]. Semin Cancer Biol, 2021, 69: 166-177. DOI:10.1016/j.semcancer.2019.11.002.
[6]  Shea JE, Miller SC. Skeletal function and structure: implications for tissue-targeted therapeutics[J]. Adv Drug Deliv Rev, 2005, 57(7): 945-957. DOI:10.1016/j.addr.2004.12.017.
[7] Makris G, Tseligka ED, Pirmettis I, et al. Development and pharmacological evaluation of new bone-targeted (99m)Tc-radiolabeled bisphosphonates[J]. Mol Pharm, 2016, 13(7): 2301-2317. DOI:10.1021/acs.molpharmaceut.6b00081.
[8]  Hochdörffer K, Abu Ajaj K, Schäfer-Obodozie C, et al. Development of novel bisphosphonate prodrugs of doxorubicin for targeting bone metastases that are cleaved pH dependently or by cathepsin B: synthesis, cleavage properties, and binding properties to hydroxyapatite as well as bone matrix[J]. J Med Chem, 2012, 55(17): 7502-7515. DOI:10.1021/jm300493m.
[9]  Xue X, Yu J, Lu F, et al. Enhancement of cancer chemotherapeutic efficacy via bone-targeted drug delivery carrier in bone metastases[J]. Drug Des Devel Ther, 2021, 15: 4455-4468. DOI:10.2147/DDDT.S333999.
[10]Ye WL, Zhao YP, Li HQ, et al. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer[J]. Sci Rep, 2015, 5: 14614. DOI:10.1038/srep14614. 
[11]Rudnick-Glick S, Corem-Salkmon E, Grinberg I, et al. Targeted drug delivery of near IR fluorescent doxorubicin-conjugated poly(ethylene glycol) bisphosphonate nanoparticles for diagnosis and therapy of primary and metastatic bone cancer in a mouse model[J]. J Nanobiotechnology, 2016, 14(1):80. DOI: 10.1186/s12951-016-0233-6.
[12]Zu Y, Hu Y, Yu X, et al. Docetaxel-loaded bovine serum albumin nanoparticles conjugated docosahexaenoic acid for inhibiting lung cancer metastasis to bone[J]. Anticancer Agents  Med Chem, 2017, 17(4): 542-551. DOI:10.2174/1871520616666160817143656.
[13]Jiang S, Liu Z, Wu L, et al. Tumor targeting with docosahexaenoic acid-conjugated docetaxel for inhibiting lung cancer metastasis to bone[J]. Oncol Lett, 2018, 16(3): 2911-2920. DOI:10.3892/ol.2018.9047.
[14]Chu W, HUANG Y, YANG C, et al. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis[J]. Int J Pharm, 2017, 516(1-2): 352-363. DOI:10.1016/j.ijpharm.2016.11.051.
[15]WEILBAECHER K N, GUISE T A, MCCAULEY L K. Cancer to bone: a fatal attraction[J/OL]. Nature reviews. Cancer, 2011, 11(6): 411-425. DOI:10.1038/nrc3055.
[16]Johnson RW, Nguyen MP, Padalecki SS, et al. TGF-β promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical Hedgehog signaling[J]. Cancer Res, 2011, 71(3): 822-831. DOI:10.1158/0008-5472.CAN-10-2993.
[17]Vanderburgh JP, Kwakwa KA, Werfel TA, et al. Systemic delivery of a gli inhibitor via polymeric nanocarriers inhibits tumor-induced bone disease[J]. J Control Release, 2019, 311-312: 257-272. DOI:10.1016/j.jconrel.2019.08.038.
[18]Niu Y, Yang H, Yu Z, et al. Intervention with the bone-associated tumor vicious cycle through dual-protein therapeutics for treatment of skeletal-related events and bone metastases[J]. ACS Nano, 2022, 16(2): 2209-2223. DOI:10.1021/acsnano.1c08269.
[19]Au KM, Satterlee A, Min Y, et al. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: turning a bone antiresorptive agent into an anticancer therapeutics[J]. Biomaterials,2016,82: 178-193. DOI:10.1016/j.biomaterials. 2015. 12.018.
[20]Ye WL, Zhao YP, Cheng Y, et al. Bone metastasis target redox-responsive micell for the treatment of lung cancer bone metastasis and anti-bone resorption[J]. Artif Cells  Nanomed Biotechnol, 2018, 46(sup1): 380-391. DOI:10.1080/21691401.2018.1426007.
[21]Bai SB, Cheng Y, Liu DZ, et al. Bone-targeted PAMAM nanoparticle to treat bone metastases of lung cancer[J]. Nanomedicine (London), 2020, 15(9): 833-849. DOI:10.2217/nnm-2020-0024.
PDF(1656 KB)

Accesses

Citation

Detail

Sections
Recommended

/