Objective To explore the biomechanical characteristics of different modes of new horizontal screw-screw crosslink (hS-S CL) in C1-C2 pedicle screw-rod fixation (C1-C2 PSR) by three-dimensional finite element, which provided theoretical basis for clinical selection of the optimal hS-S CL. Methods The atlantoaxial finite element models were established respectively: the normal group was group A , the unstable group was group B, C1-C2PSR group was C, C1-C2PSR+ upper/lower hS-SCL , C1-C2PSR+ dS-SCL and C1-C2PSR+xS-SCL groups were D-H group respectively. The Range of motion (ROM) and Von Miss Stresses in flexion and extension, lateral flexion and rotation of the normal group, the unstable group and the six kinds of internal fixation groups were calculated by applying 1.5 Nm torque to each finite element model, and the stress cloud was extracted. Results ①Under the 6 working conditions, the ROM in the normal group and the internal fixation group was significantly lower than that in the unstable group. In flexion and extension state: the ROM of all internal fixation groups was basically the same. Under the conditions of lateral flexion and rotation, compared with that in the without crosslink group, the ROM in the D-H group was reduced by 34-44% and 79%, 36-46% and 76-80%, 39-47% and 78-79%, 40-46% and 78-79%, 49-50% and 91-93%, respectively, and the ROM in the H group decreased most obviously in the rotation state. ② The stress peak of internal plant model: the maximum stress of the crosslink group was generally smaller than that of the non-crosslink group, and the stress peak value of all the internal fixation groups was the lowest when the extension was carried out. ③ The stress cloud of internal plants showed that the stress distribution areas of the internal fixation in the crosslink fixation group were basically the same, and there was no obvious stress concentration phenomenon in the internal fixation, and the main stress distribution areas were the screw root and bone joint, and the crosslink ends were the screw tail groove or the joint rod joint. Conclusions The new hS-S CL in posterior C1-C2 pedicle screw-rod fixation has the strongest anti-rotation stability, but the stress distribution at both ends of the transverse connection is obvious, which may be prone to transverse fracture.
Key words
Crosslink /
  /
  /
Posterior /
  /
  /
Atlantoaxial /
  /
  /
Three-dimensional finite element
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Jain AK, Tawari M, Rathore L, et al. An experience with Goel-Harms C1-C2 fixation for type II odontoid fractures[J]. J Craniovertebr Junction Spine, 2022, 13: 175-181. DOI:10.4103/jcvjs.jcvjs_22_22.
[2] Tatter C, Fletcher-Sandersjöö A, Persson O, et al. Fluoroscopy-assisted C1-C2 posterior fixation for atlantoaxial instability: a single-center case series of 78 patients[J]. Medicina (Kaunas), 2022, 58(1):114. DOI: 10.3390/medicina58010114.
[3] Unni C, Pettakkandy V, P AJ, et al. Atlantoaxial stabilization by posterior C1 and C2 screw-rod fixation for various pathologies: case series and comprehensive review of literature[J]. J Neurosci Rural Pract, 2021, 12(2): 228-235. DOI:10.1055/s-0041-1722838.
[4] Du JY, Aichmair A , Kueper J , et al. Biomechanical analysis of screw constructs for atlantoaxial fixation in cadavers: a systematic review and meta-analysis[J]. J Neurosurg Spine, 2015, 22(2):151-161. DOI:10.3171/2014.10. SPINE13805.
[5] Ouyang B, Zou X, Luo C, et al. Finite element analysis of horizontal screw-screw crosslink used in C1-C2 pedicle screw-rod fixation[J]. Med Sci Monit, 2021, 27 :e932026. DOI:10.12659/MSM.932026.
[6] Mizuno T, Sakakibara T, Yoshikawa T , et al. Biomechanical stability of a cross-rod connection with a pedicle screw system[J]. Med Sci Monit Basic Res , 2018, 24:26-30. DOI: 10.12659/msmbr.906339.
[7] Cornaz F , Widmer J , Snedeker JG , et al.Cross-links in posterior pedicle screw-rod instrumentation of the spine: a systematic review on mechanical, biomechanical, numerical and clinical studies[J]. Eur Spine J, 2021, 30(1):34-49. DOI:10.1007/s00586-020-06597-z.
[8] Mizutani J , Inada A , Kato K , et al. Advantages of an on-the-screwhead crosslink connector for atlantoaxial fixation using the Goel/Harms technique[J]. J Clin Neurosci, 2018, 50:183-189. DOI: 10.1016/j.jocn.2018.01.043.
[9] 陈金水, 倪斌, 陈博,等. 寰枢椎脱位三维非线性有限元模型的建立和分析[J]. 中国脊柱脊髓杂志, 2010(9):749-753. DOI: 10.3969/j.issn.1004-406X.2010.09.13.
[10] 马向阳, 钟世镇, 刘景发,等. 寰椎椎弓根螺钉进钉点的解剖定位研究[J]. 骨与关节损伤杂志, 2003, 18(10):683-685. DOI: 10.3969/j.issn.1672-9935.2003.10.014.
[11] 马向阳, 尹庆水, 吴增晖,等. 枢椎椎弓根螺钉进钉点的解剖定位研究[J]. 中华外科杂志, 2006, 44(8):562-564. DOI: 10.3760/j:issn:0529-5815.2006.08.018.
[12] Cai XH , Liu ZC , Yang Y , et al. Evaluation of biomechanical properties of anterior atlantoaxial transarticular locking plate system using three-dimensional finite element analysis[J]. Eur Spine J, 2013, 22(12):2686-2694. DOI:10.1007/s00586-013-2887-1.
[13] Zhang BC, Liu HB, Cai XH, et al. Biomechanical comparison of a novel transoral atlantoaxial anchored cage with established fixation technique - a finite element analysis[J] .BMC Musculoskelet Disord, 2015, 16: 261. DOI:10.1186/s12891-015-0662-7.
[14] Panjabi MM, Dvorák J, Crisco J, et al. Instability in injury of the alar ligament. A biomechanical model[J]. Orthopade, 1991, 20(2):112-120. PMID: 2067836.
[15] Lapsiwala SB , Anderson PA , Oza A , et al. Biomechanical comparison of four C1 to C2 rigid fixative techniques: anterior transarticular, posterior transarticular, C1 to C2 pedicle, and C1 to C2 intralaminar screws[J]. Neurosurgery, 2006, 58(3):516-521. DOI:10.1227/01.NEU.0000197222.05299.31.
[16] Zhang H, Bai J. Nonlinear finite element analysis of C0-C1-C2 complex under physiologic loads[J] .Conf Proc IEEE Eng Med Biol Soc, 2005, 2005: 6165-6167. DOI:10.1109/IEMBS.2005.1615902.
[17] Cai XH , Liu ZC , Yang Y , et al. Evaluation of biomechanical properties of anterior atlantoaxial transarticular locking plate system using three-dimensional finite element analysis[J]. Eur Spine J, 2013, 22(12):2686-2694. DOI:10.1007/s00586-013-2887-1.
[18] Li Z, Zhou J, Qu X, et al. Finite element analysis and comparative study of 4 kinds of internal fixation systems for anterior cervical discectomy and fusion in children[J] .Comput Math Methods Med, 2022, 2022: 6072927. DOI:10.1155/2022/6072927.
[19] Tan LA, Yoganandan N, Choi H, et al. Biomechanical analysis of 3-level anterior cervical discectomy and fusion under physiologic loads using a finite element model[J].Neurospine, 2022, 19(2): 385-392. DOI: 10.14245/ns.2143230.615.
[20] Shen YW, Yang Y, Liu H, et al. Biomechanical evaluation of intervertebral fusion process after anterior cervical discectomy and fusion: a finite element study[J]. Front Bioeng Biotechnol, 2022, 10: 842382. DOI:10.3389/fbioe.2022.842382.
[21] Lim TH, Kim JG, Fujiwara A, et al. Biomechanical evaluation of diagonal fixation in pedicle screw instrumentation[J]. Spine (Phila Pa 1976), 2001, 26(22):2498-2503. DOI:10.1097/00007632-200111150-00020.
[22] Alizadeh M, Kadir MR, Fadhli MM , et al. The use of X-shaped cross-link in posterior spinal constructs improves stability in thoracolumbar burst fracture: a finite element analysis[J]. J Orthop Res, 2013, 31(9): 1447-1454. DOI:10.1002/jor.22376.
[23] 陶文明, 彭昊, 廉凯. 胸腰椎椎弓根钉内固定术后螺钉断裂的原因分析[J]. 中国矫形外科杂志, 2013, 21(4):397-399. DOI: 10.3977/j.issn.1005-8478.2013.04.18.