Biomechanical comparison of horizontal screw-screw crosslink and horizontal rod-rod crosslink in C1-C2 pedicle screw-rod fixation 

Ouyang Beiping, Ma Xiangyang, Luo Chunshan, Zou Xiaobao, Liang Dongzhu, Lu Tingsheng, Chen Qiling

Chinese Journal of Clinical Anatomy ›› 2023, Vol. 41 ›› Issue (5) : 588-592.

PDF(3320 KB)
PDF(3320 KB)
Chinese Journal of Clinical Anatomy ›› 2023, Vol. 41 ›› Issue (5) : 588-592. DOI: 10.13418/j.issn.1001-165x.2023.5.15

Biomechanical comparison of horizontal screw-screw crosslink and horizontal rod-rod crosslink in C1-C2 pedicle screw-rod fixation 

  • Ouyang Beiping1, Ma Xiangyang2*, Luo Chunshan1, Zou Xiaobao2, Liang Dongzhu3, Lu Tingsheng1, Chen Qiling 1
Author information +
History +

Abstract

Objective    To investigate the biomechanical stability of the horizontal screw-screw crosslink in C1-C2 pedicle screw-rod fixation (C1-C2 PSR).  Methods  Six fresh human occipitocervical specimens were divided into the intact state group (group A), and the atlantoaxial instability model of type II odontoid fracture was established on the intact state group (group B). The C1-C2 PSR was performed on each specimen in the instability group (group C). In group C, horizontal rod-rod crosslink (hR-R CL) and horizontal screw-screw crosslink (hS-S CL) were successively installed in each specimen of group C to form group D and group E, respectively. Group E included upper transverse connection (two atlas screw tails) E1 group and lower transverse connection (two axis screw tails) E2 group. The specimen models were tested in order of flexion, extension, lateral flexion and lateral rotation on a  three dimensional motion machine, and the atlantoaxial ROM of each group of specimens was obtained. Repeated measure ANOVA was used to evaluate the biomechanical properties of each group.    Results   ① In all directions, the ROM the intact group and the internal fixation group was lower than that of the instability group, and there were significant differences (P< 0.05). ② In the direction of flexion and extension, there was no statistical difference in the ROM among the four internal fixation groups (P>0.05),  ROM: Group A < Group C = Group D = Group E1/E2 < Group B, in the direction of lateral flexion and rotation, the ROM of the crosslink internal fixation group was lower than that of the non-crosslink internal fixation group, and there was significant difference (P<0.05), ROM) : Group A < Group C < Group D = Group E1/E2 < Group B. ③ There were no statistical differences between group D and E1/E2 group in all directions (P>0.05), and no statistical differences between group E1 and E2 in all directions (P> 0.05).    Conclusions   Crosslink has good anti-axial rotation stability in C1-C2 pedicle screw-rod fixation. The hR-R CL has the same biomechanical stability as the traditional hS-S CL. The biomechanical properties of the hR-R CL are basically the same when it is installed on the atlas side and the axial side.

Key words

Crosslink;  /   / Posterior;  /   /  Atlantoaxial;  /   / Biomechanics

Cite this article

Download Citations
Ouyang Beiping, Ma Xiangyang, Luo Chunshan, Zou Xiaobao, Liang Dongzhu, Lu Tingsheng, Chen Qiling. Biomechanical comparison of horizontal screw-screw crosslink and horizontal rod-rod crosslink in C1-C2 pedicle screw-rod fixation [J]. Chinese Journal of Clinical Anatomy. 2023, 41(5): 588-592 https://doi.org/10.13418/j.issn.1001-165x.2023.5.15

References

[1] Salunke P, Sahoo S, Khandelwal NK, et al. Technique for direct posterior reduction in irreducible atlantoaxial dislocation:multi-planar realignment of C1-2[J]. Clin Neurol Neurosurg 2015, 131:47-53. DOI:10.1016/j.clineuro.2015.01.025.
[2] Yin Y, Tong H, Qiao G, et al. Posterior reduction of fixed atlantoaxial dislocation and basilar invagination by atlantoaxial facet joint release and fixation: a modified technique with 174 cases[J]. Neurosurgery, 2016, 78:391-400. DOI:10.1227/NEU.0000000000001026.
[3] Ashman RB, Birch JG, Bone LB, et al. Mechanical testing of spinal instrumentation[J]. Clin Orthop Relat Res, 1988, 227: 113-125.DOI:10.1097/00007632-199811010-00002.
[4] Deligianni D, Korovessis P, Baikousis A, et al. Factor analysis of the effectiveness of transfixation and rod characteristics on the TSRH screw-rod instrumentation[J]. J Spinal Disord, 2000, 13(1): 50-57. DOI:10.1097/00002517-200002000-00011.
[5] Chen PQ, Lin SJ, Wu SS, et al. Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design[J]. Spine (Phila Pa 1976), 2003, 28(9): 881-886. DOI:10.1097/01.BRS.0000058718.38533.B8.
[6]  Reddy CG, Magnetta M, Dahdaleh NS, et al. An in vitro biomechanical comparison of single-rod, dual-rod, and dual-rod with transverse connector in anterior thoracolumbar instrumentation[J]. Neurosurgery, 2012, 70(4):1017-1023. DOI:10.1227/NEU.0b013e31823cf254.
[7] Doulgeris JJ, Aghayev K, Gonzalez-Blohm SA, et al. Comparative analysis of posterior fusion constructs as treatments for middle and posterior column injuries: an in vitro biomechanical investigation[J]. Clin Biomech (Bristol, Avon), 2013, 28(5):483-489. DOI:10.1016/j.clinbiomench.2013.05.001.
[8]  Cornaz F, Widmer J, Snedeker JG, et al. Cross-links in posterior pedicle screw-rod instrumentation of the spine: a systematic review on mechanical, biomechanical, numerical and clinical studies[J] .Eur Spine J, 2021, 30 (1): 34-49.DOI:10.1007/s00586-020-06597-z.
[9]  马向阳, 杨进城, 邹小宝,等. 寰枢椎后路专用钉棒固定器械的研制与初步临床应用[J]. 中国骨科临床与基础研究杂志, 2016, 8(5):8. DOI:10.3969/j.issn.1674-666X.2016.05.001.
[10] Sim HB ,  Lee JW ,  Park JT , et al. Biomechanical evaluations of various c1-c2 posterior fixation techniques.[J]. Spine, 2011, 36(6):E401. DOI:10.1097/BRS.0b013e31820611ba.
[11] Gebauer M, Barvencik F, Briem D, et al. Evaluation of anatomic landmarks and safe zones for screw placement in the atlas via the posterior arch[J]. Eur Spine J, 2010, 19(1):85-90. DOI:10.1007/s00586-009-1181-8.
[12]Resnick DK, Benzel EC.C1-C2 pedicle screw fixation with rigid cantilever beam construct: case reportand technical note[J]. Neurosurgery, 2002, 50(2): 426-428. DOI: 10.1097/00006123-200202 000-00039.
[13] Ebraheim N, Rollins JR Jr, Xu R, et al. Anatomic consideration of C2 pedicle screw placement [J]. Spine, 1996, 21 (6):691-695. DOI:10.1097/00007632-199603150-00005.
[14] Yuan B, Zhou S, Chen X, et al. Gallie technique versus atlantoaxial screw-rod constructs in the treatment of atlantoaxial sagittal instability: a retrospective study of 49 patients[J]. J Orthop Surg Res, 2017, 12(1):105.DOI:10.1186/s13018-017-0607-y.
[15] Huang DG ,  Hao DJ ,  He BR , et al. Posterior atlantoaxial fixation: a review of all techniques[J]. Spine J, 2015, 15(10):2271-2281.DOI:10.1016/j.spinee.2015.07.008.
[16]Song J ,  Yi P ,  Wang Y , et al. Short-term posterior C1-C2 pedicle screw fixation without fusion to treat type II odontoid fracture among people under 60 years[J]. Arch Orthop Trauma Surg, 2020, (8):543-551. DOI:10.1007/s00402-020-03641-x.
[17]Gyo JY ,  Byung-Jou L ,  Wonhyoung P , et al. C1-2 Pedicle Screw Fixation for Ponticulus Posticus and Duplication of Vertebral Artery: 2-Dimensional Operative Video[J]. Oper Neurosurg, 2020, 20(4): E298-E299. DOI:10.1093/ons/opaa397.
[18]Li T ,  Ma C ,  Du YQ , et al. The Role of Transverse Connectors in C1-C2 fixation for Atlantoaxial Instability: Is It Necessary? A Biomechanical Study[J]. World Neurosurg, 2020, 140, e212-e218. DOI:10.1016/j.wneu.2020.04.247.
[19]Qiu F ,  Zou XB ,  Xu XL , et al. A biomechanical comparison of crossed and parallel rod configurations in atlantoaxial internal fixation[J]. Eur Spine J, 2021, 30(2):576-584. DOI:10.1007/s00586-020-06655-6.
[20]Mizutani J, Inada A, Kato K, et al. Advantages of an on-the-screwhead crosslink connector for atlantoaxial fixation using the Goel/Harms technique[J]. J Clin Neurosci, 2018, 50: 183-189. DOI:10.1016/j.jocn.2018.01.043.
PDF(3320 KB)

Accesses

Citation

Detail

Sections
Recommended

/