Objective To investigate the mechanism of neuromuscular electrical stimulation (NMES) regulating the expression of inflammatory factors in repairing spinal cord injury (SCI). Methods Sixty healthy adult mice were randomly divided into a Sham group, a SCI group, a 1 Hz NMES group, a 20 Hz NMES group, 15 mice in each group. Basso Mouse Scale (BMS) score and footprint analysis were used to observe the recovery of hindlimb motor function of mice. Immunofluorescence was used to observe the number of anterior horn neurons of spinal cord injury. Real-time RT-PCR was used to detect the expression of inflammatory factors TNF-α, IL-6 and IL-12 mRNA. Western Blot was used to determine the inflammatory factors TNF-α, IL-6, IL-12 and the expression of BDNF, GFAP. Results Compared with the SCI group, the hindlimb motor function of mice was significantly improved after the neuromuscular electrical stimulation intervention, and the number of surviving neurons at the injury site was increased, and the number of neurons in the 20 Hz NMES group was more than that in the 1 Hz NMES group. Neuromuscular electrical stimulation intervention could down-regulate the expression of TNF-α, IL-6, IL-12 and GFAP, and promote the expression of BDNF. Conclusions Neuromuscular electrical stimulation can down-regulate inflammatory factors, inhibit the expression of GFAP, inhibit glial scarring, and up-regulate the expression of BDNF to protect the number of neurons, and promote the recovery of motor function in mice after spinal cord injury.
Key words
Spinal cord injury /
  /
  /
  /
Neuromuscular electrical stimulation /
  /
  /
Inflammatory factor /
Functional recovery
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms[J]. Int J Mol Sci, 2020, 21(20): 7533. DOI: 10.3390/ijms21207533.
[2] 刘露, 翟启明, 张青, 等. 间充质干细胞聚合体治疗大鼠脊髓损伤的实验研究[J]. 神经解剖学杂志, 2020, 36(4): 362-368. DOI: 10.16557/j.cnki.1000-7547.2020.04.002.
[3] Arpin DJ, Ugiliweneza B, Forrest G, et al. Optimizing neuromuscular electrical stimulation pulse width and amplitude to promote central activation in individuals with severe spinal cord injury[J]. Front Physiol, 2019, 10: 1310. DOI: 10.3389/fphys.2019.01310.
[4] Maruoka H, Tanaka KI, Takayanagi M, et al. Effects of neuromuscular electrical stimulation on pulmonary alveola and cytokines in chronic obstructive pulmonary disease (COPD) and skeletal muscle atrophy model mice[J]. J Phys Ther Sci, 2021, 33(1): 1-8. DOI: 10.1589/jpts.33.1.
[5] Bekhet AH, Bochkezanian V, Saab IM, et al. The effects of electrical stimulation parameters in managing spasticity after spinal cord injury: a systematic review[J]. Am J Phys Med Rehabil, 2019, 98(6): 484-499. DOI: 10.1097/PHM.0000000000001064.
[6] Parvin S, Williams CR, Jarrett SA, et al. Spinal cord injury increases pro-inflammatory cytokine expression in kidney at acute and sub-chronic stages[J]. Inflammation, 2021, 44(6): 2346-2361. DOI: 10.1007/s10753-021-01507-x.
[7] Quadri SA, Farooqui M, Ikram A, et al. Recent update on basic mechanisms of spinal cord injury[J]. Neurosurg Rev, 2020, 43(2): 425-441. DOI: 10.1007/s10143-018-1008-3.
[8] Sharif S, Jazaib Ali MY. Outcome prediction in spinal cord injury: myth or reality[J]. World Neurosurg, 2020, 140: 574-590. DOI: 10.1016/j.wneu.2020.05.043.
[9] Goganau I, Sandner B, Weidner N, et al. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury[J]. Exp Neurol, 2018, 300: 247-258. DOI: 10.1016/j.expneurol.2017.11.011.
[10] Jiang L, Wei ZC, Xu LL, et al. Inhibition of miR-145-5p reduces spinal cord injury-induced inflammatory and oxidative stress responses via affecting nurr1-TNF-α signaling axis[J]. Cell Biochem Biophys, 2021, 79(4): 791-799. DOI: 10.1007/s12013-021-00992-z.
[11] Badner A, Vidal P M, Hong J, et al. Endogenous interleukin-10 deficiency exacerbates vascular pathology in traumatic cervical spinal cord injury[J]. J Neurotrauma, 2019, 36(15): 2298-2307. DOI: 10.1089/neu.2018.6081.
[12]梁爱萍, 李文辉. 小剂量超短波对脊髓损伤功能恢复及对血清iNOS、TNF-α、VEGF、BDNF表达的影响[J]. 中国临床解剖学杂志, 2020, 38(5): 588-592, 596. DOI: 10.13418/j.issn.1001-165x.2020.05.019.
[13] 李向哲, 王灿, 吴勤峰, 等. 脊髓损伤后脑源性神经营养因子神经生物学效应的研究进展[J]. 中国康复理论与实践, 2018, 24(2): 160-164. DOI: 10.3969/j.issn.1006-9771.2018.02.008.
[14] Holmström U, Tsitsopoulos PP, Holtz A, et al. Cerebrospinal fluid levels of GFAP and pNF-H are elevated in patients with chronic spinal cord injury and neurological deterioration[J]. Acta Neurochir (Wien), 2020, 162(9): 2075-2086. DOI: 10.1007/s00701-020-04422-6.
[15] He Y, Sun L, Feng H, et al. Effect and mechanism of glycyrrhizin on glial scar formation after spinal cord injury in rats[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2020, 34(10): 1298-1304. DOI: 10.7507/1002-1892.202002116.