Correlation between learning and memory ability and gut microbiota structure in mice induced by high-altitude hypoxia

Li Wenhao, Qi Baoning, Shi Yi, Wang Yuhao, Zhao Zaihua, Wang Yu, Shen Xuefeng

Chinese Journal of Clinical Anatomy ›› 2023, Vol. 41 ›› Issue (3) : 296-303.

PDF(5485 KB)
PDF(5485 KB)
Chinese Journal of Clinical Anatomy ›› 2023, Vol. 41 ›› Issue (3) : 296-303. DOI: 10.13418/j.issn.1001-165x.2023.3.09

Correlation between learning and memory ability and gut microbiota structure in mice induced by high-altitude hypoxia

  • Li Wenhao1,2, Qi Baoning1, Shi Yi2, Wang Yuhao3, Zhao Zaihua2, Wang Yu1,2, Shen Xuefeng2*
Author information +
History +

Abstract

Objective    To investigate the characteristic changes of learning and memory function, gut microbiota and their correlation in high-altitude hypoxia.    Methods    C57BL/6 mice were randomly divided into a control group and a hypoxia group, with 7 mice in each group. The hypoxia group simulated at an altitude of 4000 meters exposure for 4 weeks.  The open field test, the novel object recognition and Morris water maze were used to detect the autonomous activity, anxiety- and depression-like and the learning and memory ability of the mice. 16S rDNA and Spearman correlation coefficient were used to detect the structural changes of gut microbiota and analyze the correlation between cognition and gut microbiota of the mice.    Results    Compared with the control group, the discrimination index and the percentage of time in the target quadrant were decreased significantly in hypoxia group (P<0.05). The structure of gut microbiota changed and the diversity decreased. The relative abundance of Akkermansia, Alistipes, Enterorhabdus and Ruminococcus increased at the genus level. The discrimination index and the percentage of time in the target quadrant were significantly positively correlated with α diversity (P<0.05), The discrimination index was negatively correlated with the relative abundance of Akkermansia and Alistipes (R= -0.709, -0.604, P<0.05). The percentage of time in the target quadrant was negatively correlated with the relative abundance of Akkermansia, Alistipes, and Ruminococcus (R= -0.704, -0.560, -0.547, P<0.05).   Conclusions   The exposure of high-altitude hypoxia causes the structural changes of intestinal flora in mice. The increased relative abundance of Akkermansia, Alistipes and Ruminococcus is correlated with the decreased learning and memory ability in mice.

Key words

High-altitude hypoxia;  /   / Gut microbiota;  /   / Learning and memory;  /  Cognitive Dysfunctions;  /   / Correlation analysis

Cite this article

Download Citations
Li Wenhao, Qi Baoning, Shi Yi, Wang Yuhao, Zhao Zaihua, Wang Yu, Shen Xuefeng. Correlation between learning and memory ability and gut microbiota structure in mice induced by high-altitude hypoxia[J]. Chinese Journal of Clinical Anatomy. 2023, 41(3): 296-303 https://doi.org/10.13418/j.issn.1001-165x.2023.3.09

References

[1]  Liu J, Li SJ, Qian L, et al. Effects of acute mild hypoxia on cerebral blood flow in pilots[J]. Neurol Sci, 2021, 42(2): 673-680. DOI: 10.1007/s10072-020-04567-3.
[2]  González Fuentes J, Insausti Serrano R, Cebada Sánchez S, et al. Neuropeptides in the developing human hippocampus under hypoxic-ischemic conditions[J]. J Anat, 2021, 239(4): 856-868. DOI: 10.1111/joa.13458.
[3]  Zhou Y, Lu H, Liu Y, et al. Cirbp-PSD95 axis protects against hypobaric hypoxia-induced aberrant morphology of hippocampal dendritic spines and cognitive deficits[J]. Mol Brain, 2021, 14(1): 129-145. DOI: 10.1186/s13041-021-00827-1.
[4]  Guan R, Yang C, Zhang J, et al. Dehydroepiandrosterone alleviates hypoxia-induced learning and memory dysfunction by maintaining synaptic homeostasis[J]. CNS Neurosci Ther, 2022, 28(9): 1339-1350. DOI: 10.1111/cns.13869.
[5] Qaid EYA, Zakaria R, Sulaiman SF, et al. Insight into potential mechanisms of hypobaric hypoxia-induced learning and memory deficit - Lessons from rat studies[J]. Hum Exp Toxicol, 2017, 36(12): 1315-1325. DOI: 10.1177/0960327116689714.
[6]  Zheng H, Xu P, Jiang Q, et al. Depletion of acetate-producing bacteria from the gut microbiota facilitates cognitive impairment through the gut-brain neural mechanism in diabetic mice[J]. Microbiome, 2021, 9(1): 145-163. DOI: 10.1186/s40168-021-01088-9.
[7]  Morais LH, Schreiber HLTh, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders[J]. Nat Rev Microbiol, 2021, 19(4): 241-255. DOI: 10.1038/s41579-020-00460-0.
[8]  刘贵琴, 白雪, 段雅彬, 等. 高原低氧环境对大鼠肠道菌群的影响[J]. 药学学报, 2021, 56(4): 1100-1108. DOI: 10.16438/j.0513-4870.2020-1628.
[9]  秦鹏蕊, 王迦南, 刘诗颖, 等. 模拟海拔5000 m低氧环境对小鼠肠道免疫和肠道菌群的影响[J]. 现代生物医学进展, 2022, 22(8): 1401-1407. DOI: 10.13241/j.cnki.pmb.2022.08.001.
[10]Wang Y, Shi Y, Li W, et al. Gut microbiota imbalance mediates intestinal barrier damage in high-altitude exposed mice[J]. Febs J, 2022, 289(16): 4850-4868. DOI: 10.1111/febs.16409.
[11]Kumari P, Roy K, Wadhwa M, et al. Fear memory is impaired in hypobaric hypoxia: Role of synaptic plasticity and neuro-modulators in limbic region[J]. Life Sci, 2020, 254: 117555. DOI: 10.1016/j.lfs.2020.117555.
[12]Alam S, Ray K, Jain V, et al. Reduced expression of Kalirin-7 contributes to working memory deficit during chronic hypobaric hypoxia exposure[J]. Behav Brain Res, 2019, 366: 135-141. DOI: 10.1016/j.bbr.2019.03.016.
[13]Shen Hui, Meng Yanling, Liu Dan, et al. α7 Nicotinic acetylcholine receptor agonist PNU-282987 ameliorates cognitive impairment induced by chronic intermittent hypoxia[J]. Nat Sci Sleep, 2021, 13: 579-590. DOI: 10.2147/nss.S296701.
[14]Lopez-Perez SJ, Morales-Villagran A, Ventura-Valenzuela J, et al. Short- and long-term changes in extracellular glutamate and acetylcholine concentrations in the rat hippocampus following hypoxia[J]. Neurochem Int, 2012, 61(2): 258-265. DOI: 10.1016/j.neuint.2012.03.009.
[15]Xue LL, Du RL, Hu Y, et al. BDNF promotes neuronal survival after neonatal hypoxic-ischemic encephalopathy by up-regulating Stx1b and suppressing VDAC1[J]. Brain Res Bull, 2021, 174: 131-140. DOI: 10.1016/j.brainresbull.2021.05.013.
[16]Pena E, El Alam S, Siques P, et al. Oxidative stress and diseases associated with high-altitude exposure[J]. Antioxidants (Basel), 2022, 11(2): 267-280. DOI: 10.3390/antiox11020267.
[17]Li Y, Wang Y. Effects of long-term exposure to high altitude hypoxia on cognitive function and its mechanism: a narrative review[J]. Brain Sci, 2022, 12(6): 808-817. DOI: 10.3390/brainsci12060808.
[18]Zheng P, Wu J, Zhang H, et al. The gut microbiome modulates gut-brain axis glycerophospholipid metabolism in a region-specific manner in a nonhuman primate model of depression[J]. Mol Psychiatry, 2021, 26(6): 2380-2392. DOI: 10.1038/s41380-020-0744-2.
[19]Gu Y, Han Y, Ren S, et al. Correlation among gut microbiota, fecal metabolites and autism-like behavior in an adolescent valproic acid-induced rat autism model[J]. Behav Brain Res, 2022, 417: 113580. DOI: 10.1016/j.bbr.2021.113580.
[20]Chen C, Liao J, Xia Y, et al. Gut microbiota regulate Alzheimer's disease pathologies and cognitive disorders via PUFA-associated neuroinflammation[J]. Gut, 2022, 71(11): 2233-2252. DOI: 10.1136/gutjnl-2021-326269.
[21]Chen SJ, Chen CC, Liao HY, et al. Association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in patients with parkinson disease[J]. Neurology, 2022, 98(8): e848-e858. DOI: 10.1212/WNL.0000000000013225.
[22]Kim CS, Cha L, Sim M, et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(1): 32-40. DOI: 10.1093/gerona/glaa090.
[23]王昱昊, 施艺, 李文豪, 等. 肠道菌群在高原低氧肠道损伤中的作用研究[J]. 中国临床解剖学杂志, 2021, 39(6): 666-672. DOI: 10.13418/j.issn.1001-165x.2021.06.009.
[24]Wang F, Zhang H, Xu T, et al. Acute exposure to simulated high-altitude hypoxia alters gut microbiota in mice[J]. Arch Microbiol, 2022, 204(7): 412-418. DOI: 10.1007/s00203-022-03031-4.
[25]Ma Y, Ma S, Chang L, et al. Gut microbiota adaptation to high altitude in indigenous animals[J]. Biochem Biophys Res Commun, 2019, 516(1): 120-126. DOI: 10.1016/j.bbrc.2019.05.085.
[26]Geerlings SY, Kostopoulos I, De Vos WM, et al. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How[J]? Microorganisms, 2018, 6(3): 75-100. DOI: 10.3390/microorg anisms6030075.
[27]Pan Z, Hu Y, Huang Z, et al. Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge[J]. Sci China Life Sci, 2022, 65(10): 2093-2113. DOI: 10.1007/s11427-021-2056-1.
[28]Enaud R, Cambos S, Viaud E, et al. Gut microbiota and mycobiota evolution is linked to memory improvement after bariatric surgery in obese patients: a pilot study[J]. Nutrients, 2021, 13(11): 4061-4072. DOI: 10.3390/nu13114061.
[29]Kraimi N, Lormant F, Calandreau L, et al. Microbiota and stress: a loop that impacts memory[J]. Psychoneuroendocrinology, 2022, 136: 105594. DOI: 10.1016/j.psyneuen.2021.105594.
PDF(5485 KB)

Accesses

Citation

Detail

Sections
Recommended

/