Objective To construct detailed three-dimensional (3D) digital structures and apply to virtual simulation and 3D printing of the human lung bronchial trees, so as to provide accurate morphological data for the virtual simulation of fiberoptic bronchoscopy surgery. Methods The tomographic anatomical images of Chinese Visible Human CVH1,2,5,6 chest were selected. The lungs and bronchial trees were segmented and reconstructed in 3D by using AMIRA software. Cinema 4D software was used to smooth, construct an interactive 3D-PDF model, and perform 3D printing to create virtual fiberoptic bronchoscopy surgery simulation model. Results Detailed 3D digital models of 4 lung bronchial trees were constructed, including 3 adults and 1 child, showing the branches of the human bronchial tree at 3-6 levels, the number of branches at level 4 and level 6 was about twice the number of branches of the upper level. The segment of left lung was 8, the number of bronchial branches at level 6 was (63.8±3.6), the segment of right lung was 10, the number of bronchial branches at level 6 was (63.8±3.6), and the bronchial branches number ratio of the left and right lungs was 0.79. The longest length of the bronchus was located in the left lobe, and the diameter of children’s lumen was smaller than that of three adults. Conclusions The 3D digital model, 3D printing model, 3D-PDF and virtual simulation software for surgery of the bronchial trees have improved the understanding of anatomy and developmental biology of bronchial tree. We believe that the B1+2 and B7+8 bronchopulmonary segments of the left lung are separate segmental bronchi, rather than two combined segmental bronchi, which provides morphological basis for clinical anatomy teaching and virtual simulation of fiberoptic bronchoscopy surgery.
Key words
Bronchial trees;  /
  /
Three-dimensional reconstruction;  /
  /
Digital model;  /
  /
Surgery simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 闫晓伟. 慢性支气管炎的诊断与治疗(附20分析)[J]. 中国社区医师:医学专业, 2014(6):2. DOI: 10.3969/j.issn.1007-614x.2014.6.10.
[2] Chang AB, Bush A, Grimwood K. Bronchiectasis in children: diagnosis and treatment[J]. The Lancet, 2018, 392(10150):866-879. DOI: 10.1016/S0140-6736(18)31554-X.
[3] 黄海龙,符伟平,龚达聪. 猪肺支气管树三维可视化模型的构建及意义[J]. 局解手术学杂志,2016,1(25):8-11. DOI:10.11659/jjssx. 09E015126.
[4] Qanash S, Hakami OA, Al-Husayni F, et al. Flexible Fiberoptic Bronchoscopy: Indications, Diagnostic Yield and Complications[J]. Cureus, 2020, 12(10): e11122. DOI: 10.7759/cureus.11122.
[5] Sawy MS, Jayakrishnan B, Behbehani N, et al. Flexible fiberoptic bronchoscopy. Diagnostic yield[J]. Saudi Med J, 2004, 25(10):1459-1463. DOI: 10.1016/j.revmed.2004.06.006.
[6] Sethi GR, Batra V. Bronchiectasis: causes and management[J]. Indian J Pediatr, 2000, 67(2):133-139. DOI:10.1007/BF02726189.
[7] Smith B M, Traboulsi H, Austin J, et al. Human airway branch variation and chronic obstructive pulmonary disease[J]. Proc Natl Acad Sci U S A, 2018, 115(5): E974-E981. DOI:10.1073/pnas.1715564115.
[8] Horsfield K, Relea FG, Gumming G. Diameter, length and branching ratios in the bronchial tree[J]. Respir Physiol, 1976, 26(3):351-356. DOI:10.1016/0034-5687(76)90005-0.
[9] Ma W, Hu J, Yang M, et al. Application of flexible fiberoptic bronchoscopy in the removal of adult airway foreign bodies[J]. BMC Surg, 2020, 20(1):165. DOI:10.1186/s12893-020-00825-5.
[10]Deng X, Zhou G, Xiao B, et al. Effectiveness evaluation of digital virtual simulation application in teaching of gross anatomy[J]. Ann Anat, 2018, 218:276-282. DOI: 10.1016/j.aanat.2018.02.014.
[11]王志坚, 陈玉英, 杨芳,等. 胎儿心脏数字化三维模型构建[J]. 南方医科大学学报, 2015,34(4):591-593. DOI: 10.3969/j.issn.1673-4254. 2015.04.026.
[12]胡昕, 吴毅, 郭洪峰. 三维便携式文档(3D-PDF)在战现场急救培训中的应用[J]. 军事医学, 2018, 42(12):899-902, 923. DOI: 10.7644 /j. issn. 1674-9960. 2018.12.005.
[13]Fujii S, Muranaka T, Matsubayashi J, et al. The bronchial tree of the human embryo: an analysis of variations in the bronchial segments[J]. J Anat, 2020, 237(2):311-322. DOI:10.1111/joa.13199.
[14]Horsfield K, Relea FG, Cumming G. Diameter, length and branching ratios in the bronchial tree[J]. Respir Physiol, 1976, 26(3):351-356. DOI:10.1016/0034-5687(76)90005-0.
[15]Chassagnon G, Morel B, Carpentier E, et al. Tracheobronchial branching abnormalities: lobe-based classification scheme[J]. Radiographics, 2016, 36(2):358-73. DOI: 10.1148/rg.2016150115.
[16]郑宇娜, 黄海龙. 胎儿肺支气管铸型及三维可视化结构的研究[J]. 局解手术学杂志, 2019, 28(6):429-432. DOI:10.11659/jjssx.03E019018.
[17]Meyer ER, Cui D. Anatomy visualizations using stereopsis: assessment and implication of stereoscopic virtual models in anatomical education[J]. Adv Exp Med Biol, 2020, 1235:117-130. DOI:10.1007/978-3-030-37639-0_7.
[18]Gopal M, Skobodzinski AA, Sterbling HM, et al. Bronchoscopy simulation training as a tool in medical school education[J]. Ann Thorac Surg,2018,106(1):280-286. DOI: 10.1016/j.athoracsur. 2018. 02.011.
[19]Nilsson PM, Naur TMH, Clementsen PF, et al. Simulation in bronchoscopy: current and future perspectives[J]. Adv Med Educ Pract, 2017, 8:755-760. DOI: 10.2147/AMEP.S139929.
[20]Cui D, Chen J, Meyer E, et al. Anatomy visualizations using stereopsis: current methodologies in developing stereoscopic virtual models in anatomical education[J]. Adv Exp Med Biol, 2019, 156:49-65. DOI:10.1007/978-3-030-19385-0_4.
[21]白玉兴. 三维数字化技术在正畸诊断和治疗设计中的应用[J]. 中华口腔医学杂志, 2016, 51(6):326-30. DOI: 10.3760/cma.j.issn.1002-0098.2016.06.002.
[22]Zhao X, Ju Y, Liu C, et al. Bronchial anatomy of left lung: a study of multi-detector row CT[J]. Surg Radiol Anat, 2009, 31(2):85-91. DOI:10.1007/s00276-008-0404-8. Epub 2008 Aug 26.
[23]Fujii S, Muranaka T, Matsubayashi J, et al. Bronchial tree of the human embryo: Categorization of the branching mode as monopodial and dipodial[J]. PLoS One, 2021, 15;16(1): e0245558. DOI: 10.1371/journal.pone.0245558. PMID: 33449967.