Application of adipose-derived stem cell aggregate-extracellular matrix composite patch to repair full-thickness skin trauma in external ear canal of New Zealand rabbits

Ma Hongfeng, Ren Qing, Zheng Mo, Cheng Wanmin, Lian Mei

Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (6) : 704-709.

PDF(5636 KB)
PDF(5636 KB)
Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (6) : 704-709. DOI: 10.13418/j.issn.1001-165x.2022.6.13

Application of adipose-derived stem cell aggregate-extracellular matrix composite patch to repair full-thickness skin trauma in external ear canal of New Zealand rabbits

  • Ma Hongfeng1, Ren Qing1, Zheng Mo2, Cheng Wanmin1, Lian Mei1
Author information +
History +

Abstract

Objective    To explore the application of an adipose-derived stem cell (ADSC)aggregate-extracellular matrix (ECM) composite patch in full-thickness skin repair of the external auditory meatus of rabbits.    Methods    New Zealand white rabbits were randomly divided into 3 groups of 10 rabbits each: a blank group, a control group, and an experimental group. A full-thickness skin defect of the inner wall of the external auditory meatus was created at the ventral root of the ear. In the control group and experimental group, the ECM scaffold and the ADSC aggregate-ECM scaffold were laid between the gelatin sponge and the edge of the wound surface using the in-plant method to ensure that the scaffold completely covered the wound surface before the wound was sutured. The blank group underwent no treatment. After postoperative 14 days , the wound healing rate and the positive ratio of bacterial colonies in the wound tissues were compared among the groups. Immunohistochemical examination was used to detect the expression of proliferating cell nuclear antigen( Ki-67)in the wound tissues of each group, and Western blot was used to detect the expression of the inflammatory factors interleukin 1β(IL-1β) and tumor necrosis factor-α (TNF-α)in the wound tissues of each group.    Results    The wound healing rate and the proportion of Ki-67–positive cells were significantly higher in the experimental group and control group than those in the blank group, whereas the positive ratio of bacterial colonies and the expression of IL-1β and TNF-α in the wound tissue were significantly lower.  Compared with the control group, the wound healing rate and proportion of Ki-67-positive cells were significantly higher whereas the positive ratio of bacterial colonies and the expression of IL-1β and TNF-α in the wound tissue were significantly lower in the experimental group. These differences were also statistically significant (P< 0.05).    Conclusions    The ADSC aggregate-ECM composite patch can effectively promote the repair of full-thickness skin defects of the inner wall of the external auditory meatus of rabbits.

Key words

Adipose-derived stem cell aggregates;  /  Extracellular matrix;  /  Full-thickness skin repair / Tissue engineering

Cite this article

Download Citations
Ma Hongfeng, Ren Qing, Zheng Mo, Cheng Wanmin, Lian Mei. Application of adipose-derived stem cell aggregate-extracellular matrix composite patch to repair full-thickness skin trauma in external ear canal of New Zealand rabbits[J]. Chinese Journal of Clinical Anatomy. 2022, 40(6): 704-709 https://doi.org/10.13418/j.issn.1001-165x.2022.6.13

References

[1]  黄淑新, 姜宪, 崔哲洙. 耳后带蒂皮瓣在修复耳甲腔皮肤缺损中的应用[J]. 中国耳鼻咽喉颅底外科杂志, 2018, 24(2): 173-175. DOI: 10.11798/j.issn.1007-1520.201802020.
[2]  胡信, 肖林, 潘君芬. 耳周转移皮瓣修复耳廓皮肤缺损的疗效分析[J]. 中国耳鼻咽喉头颈外科, 2018, 25(8): 439-441. DOI: 10.16066/j.1672-7002.2018.08.010.
[3]  Inagaki T, Morino T, Takagi R, et al. Transplantation of autologous oral mucosal epithelial cell sheets inhibits the development of acquired external auditory canal atresia in a rabbit model[J]. Acta Biomater, 2020, 110(5): 141-152. DOI: 10.1016/j.actbio.2020.04.031.
[4]  Naderi N, Combellack EJ, Griffin M, et al. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery[J]. Int Wound J, 2017, 14(1): 112-124. DOI: 10.1111/iwj.12569.
[5]  Gadelkarim M, Abushouk AI, Ghanem E, et al. Adipose-derived stem cells: effectiveness and advances in delivery in diabetic wound healing[J]. Biomed Pharmacother, 2018, 107(11): 625-633. DOI: 10.1016/j.biopha.2018.08.013.
[6] Maria AT, Maumus M, Le Quellec A, et al. Adipose-derived mesenchymal stem cells in autoimmune disorders: state of the art and perspectives for systemic sclerosis[J]. Clin Rev Allergy Immunol, 2017, 52(2): 234-259. DOI: 10.1007/s12016-016-8552-9.
[7] Saldin LT, Cramer MC, Velankar SS, et al. Extracellular matrix hydrogels from decellularized tissues: structure and function[J]. Acta Biomater, 2017, 49(2): 1-15. DOI: 10.1016/j.actbio.2016.11.068.
[8]  Edgar L, Altamimi A, García Sánchez M, et al. Utility of extracellular matrix powders in tissue engineering[J]. Organogenesis, 2018, 14(4): 172-186. DOI: 10.1080/15476278.2018.1503771.
[9]  Daley MC, Fenn SL, Black LD. Applications of cardiac extracellular matrix in tissue engineering and regenerative medicine[J]. Adv Exp Med Biol, 2018, 1098(12): 59-83. DOI: 10.1007/978-3-319-97421-7_4.
[10]曹大勇, 牛希华, 夏成德, 等. 小鼠糖尿病全层皮肤缺损模型的建立[J]. 中华损伤与修复杂志(电子版), 2015, 10(6): 33-37. DOI: 10.3877/cma.j.issn.1673-9450.2015.06.007.
[11]马晓波, 赵守琴, 赵燕玲, 等. 异种脱细胞真皮基质修复外耳道重建术后皮肤缺损的临床研究[J]. 中华损伤与修复杂志(电子版), 2015, 10(4): 317-320. DOI: 10.3877/cma.j.issn.1673-9450.2015.04.007.
[12]范一灵, 李琼琼, 房蕊, 等. 上海地区10种中药饮片微生物污染情况研究[J]. 中草药, 2015, 46(13): 1908-1913. DOI: 10.7501/j.issn.0253-2670.2015.13.009.
[13]Wang X, Liu B, Xu Q, et al. GHK-Cu-liposomes accelerate scald wound healing in mice by promoting cell proliferation and angiogenesis[J]. Wound Repair Regen, 2017, 25(2): 270-278. DOI: 10.1111/wrr.12520.
[14]朱忠寿, 洪艺云, 王艳, 等. 角质形成细胞在中耳胆脂瘤过度增殖中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2016, 30(2): 139-143. DOI: 10.13201/j.issn.1001-1781.2016.02.013.
[15]Wu LC, Nangia V, Bui K, et al. In Vivo evaluation of wearable head impact sensors[J]. Ann Biomed Eng, 2016, 44(4): 1234-1245. DOI: 10.1007/s10439-015-1423-3.
[16]Guo B, Ma PX. Conducting polymers for tissue engineering[J]. Biomacromolecules,2018, 11(6): 1764-1782. DOI: 10.1021/acs.biomac. 8b00276.
[17]李剑, 吴文育, 陈淑君, 等. 带黑素细胞的组织工程化表皮膜片移植治疗白癜风的初步临床研究[J]. 中华皮肤科杂志, 2015, 48(3): 162-165. DOI: 10.3760/cma.j.issn.0412-4030.2015.03.005.
[18]施恩, 刘英芹. 组织工程皮肤及其附属器再生修复机制与生物学行为的研究进展[J]. 中国保健营养, 2017, 27(13): 93-95. DOI: 10.3969/j.issn.1004-7484.2017.13.112.
[19]Kobayashi J, Kikuchi A, Aoyagi T, et al. Cell sheet tissue engineering: cell sheet preparation, harvesting/manipulation, and transplantation[J]. J Biomed Mater Res A, 2019, 107(5): 955-967. DOI: 10.1002/jbm.a.36627.
[20]Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, et al. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering[J]. Artif Cells Nanomed Biotechnol, 2018, 46(4): 691-705. DOI: 10.1080/21691401.2017.1349778.
[21]Bhardwaj N, Chouhan D, Mandal BB. Tissue engineered skin and wound healing: current strategies and future directions[J]. Curr Pharm Des, 2017, 23(24): 3455-3482. DOI: 10.2174/13816128236661705260 94606.
[22]Li X, Wang M, Jing X, et al. Bone marrow-and adipose tissue-derived mesenchymal stem cells: characterization, differentiation, and applications in cartilage tissue engineering[J]. Crit Rev Eukaryot Gene Expr, 2018, 28(4): 285-310. DOI: 10.1615/Crit Rev Eukaryot Gene Expr. 2018023572.
[23]Li P, Guo X. A review: therapeutic potential of adipose-derived stem cells in cutaneous wound healing and regeneration[J]. Stem Cell Res Ther, 2018, 9(1): 302-309. DOI: 10.1186/s13287-018-1044-5.
[24]Takewaki M, Kajiya M, Takeda K, et al. MSC/ECM cellular complexes induce periodontal tissue regeneration[J]. J Dent Res, 2017, 96(9): 984-991. DOI: 10.1177/0022034517708770.
PDF(5636 KB)

Accesses

Citation

Detail

Sections
Recommended

/