rno-miR-161 inhibits ferroptosis by targeting EGLN2 in VD rat model frontal lobe

Zhou Xianxi, Zhou Liting, Ma Chunmei, Kong Jiechen, Su Junfang, Deng Rudong, Liu Aijun, Chen Dongfeng

Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (6) : 665-670.

PDF(4163 KB)
PDF(4163 KB)
Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (6) : 665-670. DOI: 10.13418/j.issn.1001-165x.2022.6.07

rno-miR-161 inhibits ferroptosis by targeting EGLN2 in VD rat model frontal lobe

  • Zhou Xianxi1, Zhou Liting2, Ma Chunmei2, Kong Jiechen1, Su Junfang1, Deng Rudong1, Liu Aijun1, Chen Dongfeng3*
Author information +
History +

Abstract

Objective    To explore the effect of rno-miR-161 on regulating egl-9 hypoxia-inducible factor 2(EGLN2) in frontal ferroptosis in vascular dementia (VD) rat.    Methods    Twenty-four adult male SD rats were randomly divided into a control group (sham), a model group (VD). The VD group was obtained by bilateral carotid artery ligation, while the sham group was not ligated with bilateral carotid artery. The Morris water maze test was applied to assess the symptoms of VD 4 weeks after surgery. RT-qPCR was used to detect the changes of rno-miR-161. RT-qPCR and Western blotting were used to detect the expression levels of EGLN2 and glutathione-dependent antioxidant enzyme glutathione peroxidase 4 (GPX4). The relationship between rno-miR-161 and EGLN2 was predicted by bioinformatics and luciferase reporter gene test. RT-qPCR and Western blotting were used to detect the effect of rno-miR-161-mimic and rno-miR-161-inhibitor on EGLN2 expression.  The expression of EGLN2 was interfered by interference technology and the expression of GPX4 was detected by Western blotting and RT-qPCR.   Results   Compared with the control group, the expression of rno-miR-161 was down-regulated in the frontal lobe, the EGLN2 expression was increased while GPX4 was down-regulated. The EGLN2 was the direct target of rno-miR-161. rno-miR-161-minic inhibited the expression of EGLN2, rno-miR-161-inhibitor resulted in higher EGLN2 expression. siEGLN2 promoted GPX4.   Conclusions    rno-miR-161 inhibits ferroptosis by targeting EGLN2 expression in VD rat model frontal lobe.

Key words

Vascular dementia /   /   /   / rno-miR-161 /   /   /   / EGLN2 /   /   / Ferroptosis /   /   /   / GPX4

Cite this article

Download Citations
Zhou Xianxi, Zhou Liting, Ma Chunmei, Kong Jiechen, Su Junfang, Deng Rudong, Liu Aijun, Chen Dongfeng. rno-miR-161 inhibits ferroptosis by targeting EGLN2 in VD rat model frontal lobe[J]. Chinese Journal of Clinical Anatomy. 2022, 40(6): 665-670 https://doi.org/10.13418/j.issn.1001-165x.2022.6.07

References

[1] Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia[J]. Exp Neurol, 2015, 272:97-108. DOI: 10.1016/j.expneurol. 2015.05.006.
[2] Orhan VA, Baysal B, Goren U. A case of atypical multiple sclerosis mimicking cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy syndrome[J]. Cureus, 2021, 13(1): e12508. DOI: 10.1016/j.expneurol.2015.05.006.
[3]  邓汝东, 周贤熙, 周丽亭, 等. 双侧颈总动脉结扎对大鼠大脑皮质小胶质细胞活化的影响[J]. 神经解剖学杂志, 2021, 37(6): 677-681. DOI: 10.16557/j.cnki.1000-7547.2021.06.010.
[4]  O'Brien JT, Thomas A. Vascular dementia[J]. Lancet, 2015, 386(10004): 1698-1706. DOI: 10.1016/S0140-6736(15)00463-8.
[5]  Yan N, Zhang JJ. The emerging roles of ferroptosis in vascular cognitive impairment[J]. Front Neurosci, 2010, 13: 811. DOI: 10.3389/fnins.2019.00811.
[6] Muhoberac BB, Vidal R. Iron, ferritin, hereditary ferritinopathy, and neurodegeneration[J]. Front Neurosci, 2019, 13: 1195. DOI: 10.3389/fnins.2019.00811.
[7] 贺莎莎, 刘进友, 李书剑, 等. 抑制铁死亡改善血管性痴呆大鼠认知功能的作用与机制研究[J]. 中国实用神经疾病杂志, 2021, 24(15): 1289-1298. DOI: 10.12083/SYSJ.2021.15.030.
[8] 马楚晗, 于亚男, 刘啟文, 等. miRNA对肝纤维化TGF-β/smad信号通路的影响[J]. 中国临床解剖学杂志, 2021, 39(3): 369-372. DOI: 10.13418/j.issn.1001-165x.2021.03.024.
[9]  Vijayan M, Reddy PH. Non-coding RNAs based molecular links in type 2 diabetes, ischemic stroke, and vascular dementia[J]. J Alzheimers Dis, 2020, 75(2): 353-383. DOI: 10.3233/JAD-200070.
[10] Soria G, Tudela R, Márquez-Martín A, et al. The ins and outs of the BCCAO model for chronic hypoperfusion: a multimodal and longitudinal MRI approach[J]. PloS one, 2013, 8(9): e74631. DOI: 10.1371/journal.pone.0074631.
[11] Ren Z, Yu J, Wu Z, et al. MicroRNA-210-5p contributes to cognitive impairment in early vascular dementia rat model through targeting snap25[J]. Front Mol Neurosci,2018, 11: 388. DOI: 10.3389/fnmol. 2018.00388.
[12] Si W, Ye S, Ren Z, et al. miR‑335 promotes stress granule formation to inhibit apoptosis by targeting ROCK2 in acute ischemic stroke[J]. Int J Mol Med, 2019, 43(3): 1452-1466. DOI: 10.3389/fnmol.2018.00388.
[13] Liu X, Zhang R, Wu Z, et al. miR‑134‑5p/Foxp2/Syn1 is involved in cognitive impairment in an early vascular dementia rat model[J]. Int J Mol Med, 2019, 44(5): 1729-1740. DOI: 10.3892/ijmm.2019.4331.
[14]Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress[J]. Redox Biology, 2018, 15: 490-503. DOI: 10.1016/j.redox.2018.01.008.
[15] Shen L, Lin D, Li X, et al. Ferroptosis in acute central nervous system injuries: the future direction[J]? Front Cell Dev Biol, 2020, 8: 594. DOI: 10.3389/fcell.2020.00594.
PDF(4163 KB)

Accesses

Citation

Detail

Sections
Recommended

/