Anatomical study and clinical significance of posterior atlantoaxial structure 

Pan Baoshun, Chen Jinshui, Fang Zhen, Gao Mingjie

Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (6) : 633-638.

PDF(2881 KB)
PDF(2881 KB)
Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (6) : 633-638. DOI: 10.13418/j.issn.1001-165x.2022.6.01

Anatomical study and clinical significance of posterior atlantoaxial structure 

  • Pan Baoshun1,2, Chen Jinshui2*, Fang Zhen1, Gao Mingjie
Author information +
History +

Abstract

Objective    To measure the anatomical parameters of posterior atlantoaxial structure, so as to provide anatomic basis for the design of posterior atlantoaxial internal fixation system.   Methods   The anatomical parameters of 30 atlantoaxial vertebra specimens, CT posterior structures of atlantoaxial vertebra of 50 males and 50 females were measured. The CT data of different genders, bone and CT measurements on the left and right side, and bone and CT measurements were compared for statistical significance.   Results   The height and thickness of the posterior midline of the bone specimens were (10.75±1.38) mm and (8.55±1.77) mm, and the distances from the medial edge of the vertebral artery sulci on both sides to the posterior midline of the bone specimens were (13.45±0.73) mm and (20.28±2.20) mm, respectively. The posterior arch angles of the inner and outer edges were (141.00±3.43) ° and (134.67±2.87) °, respectively. The height and thickness of the posterior midline measured by CT were (10.45±1.61) mm and (8.12±1.57) mm, and the distances between the inner and outer posterior midline and the medial edge of the vertebral artery sulci by CT measurement were (13.60±1.26) mm and (20.48±2.05) mm, respectively. The angle of posterior arch of the inner and outer edges by CT measurement were (141.23±9.64) ° and (135.47±9.02) °, respectively, the radius of the outer edge of posterior arch was (26.77±2.14) mm, the slope rate of the vertebral lamina of the axial vertebra was (58.34±7.60) °. The height from the lower edge of the posterior arch of the atlas to the upper edge of the spinous process of the axial vertebra was (19.07±2.73) mm. The height of posterior atlantoaxial space was (6.83±2.01) mm.  There were statistical differences in most of gender in CT data (P<0.05). There was no significant difference in bone specimens and CT data on the left and right sides (P>0.05). There was no significant difference between bone specimens and CT data (P>0.05).  Conclusions  The anatomical characteristics of posterior atlantoaxial bone structure is relatively fixed. CT can better reflect the characteristics. This study can provide anatomical basis for the design of the posterior atlantoaxial internal fixation system.

Key words

Atlas;  /   /  Axis;  /   /  Anatomy;  /   / Imaging;  /   /  Measurement;  /   / CT

Cite this article

Download Citations
Pan Baoshun, Chen Jinshui, Fang Zhen, Gao Mingjie. Anatomical study and clinical significance of posterior atlantoaxial structure [J]. Chinese Journal of Clinical Anatomy. 2022, 40(6): 633-638 https://doi.org/10.13418/j.issn.1001-165x.2022.6.01

References

[1]  Rajinda P, Towiwat S, Chirappapha P. Comparison of outcomes after atlantoaxial fusion with C1 lateral mass-C2 pedicle screws and C1-C2 transarticular screws[J]. Eur Spine J, 2017, 26(4): 1064-1072. DOI: 10.1007/s00586-016-4829-1.
[2] Huang DG, Hao DJ, He BR, et al. Posterior atlantoaxial fixation: a review of all techniques[J]. Spine J, 2015, 15(10): 2271-2281. DOI: 10.1016/j.spinee.2015.07.008.
[3] Liu C, Kamara A, Yan Y. Biomechanical study of C1 posterior arch crossing screw and C2 lamina screw fixations for atlantoaxial joint instability[J]. J Orthop Surg Res, 2020, 15(1): 156. DOI: 10.1186/s13018-020-01609-6.
[4]  Larsen AMG, Grannan BL, Koffie RM, et al. Atlantoaxial fusion using C1 sublaminar cables and C2 translaminar screws[J]. Oper Neurosurg (Hagerstown), 2018, 14(6): 647-653. DOI: 10.1093/ons/opx164.
[5] Zhang Y, Li C, Li L, et al. Design a novel integrated screw for minimally invasive atlantoaxial anterior transarticular screw fixation: a finite element analysis[J]. J Orthop Surg Res, 2020, 15(1): 244. DOI: 10.1186/s13018-020-01764-w.
[6] Kelly BP, Glaser JA, DiAngelo DJ. Biomechanical comparison of a novel C1 posterior locking plate with the harms technique in a C1-C2 fixation model[J]. Spine (Phila Pa 1976), 2008, 33(24): E920-E925. DOI: 10.1097/BRS.0b013e318185943d.
[7]  王宾宾, 马向阳, 杨进城, 等. 成人寰椎后弓解剖学研究及内固定钉板系统设计[J]. 实用骨科杂志, 2018, 24(4): 336-341. DOI: 10.13795/j.cnki.sgkz.2018.04.012.
[8]  Natsis K, Piperaki E T, Fratzoglou M, et al. Atlas posterior arch and vertebral artery's groove variants: a classification, morphometric study, clinical and surgical implications[J]. Surg Radiol Anat, 2019, 41(9): 985-1001. DOI: 10.1007/s00276-019-02256-1.
[9]  Jin GX, Wang H, Li L, et al. C1 posterior arch crossing screw fixation for atlantoaxial joint instability[J]. Spine (Phila Pa 1976), 2013, 38(22): E1397-E1404. DOI: 10.1097/BRS.0b013e3182a40869.
[10]Christensen DM, Eastlack RK, Lynch JJ, et al. C1 anatomy and dimensions relative to lateral mass screw placement[J]. Spine (Phila Pa 1976), 2007. 32(8): 844-848. DOI: 10.1097/01.brs.0000259833.02179.c0.
[11] 王宾宾, 马向阳, 段明阳, 等. 成人寰椎后弓部分结构测量及意义[J]. 中国临床解剖学杂志, 2017,35(6): 610-614. DOI: 10.13418/j.issn. 1001-165x.2017.06.003.
[12] 周凤金, 倪斌, 谢宁, 等. 个体化后路寰枢椎融合内固定治疗寰枢椎不稳[J]. 脊柱外科杂志, 2014, 12(3): 143-146. DOI: 10.3969/j.issn.1672-2957.2014.03.004.
[13] Goel A, Kulkarni AG, Sharma P. Reduction of fixed atlantoaxial dislocation in 24 cases: technical note[J]. J Neurosurg Spine, 2005, 2(4): 505-509. DOI: 10.3171/spi.2005.2.4.0505.
[14] 邹小宝, 马向阳, 杨浩志, 等. 新型后路寰枢椎板间融合器生物力学特征的有限元分析[J]. 中国组织工程研究, 2019, 23(28): 4529-4534. DOI: 10.3969/j.issn.2095-4344.1340.
[15] 邹小宝, 马向阳, 王宾宾, 等. CT测量成人寰枢椎后方部分结构数据设计寰枢椎板间融合器[J]. 中国组织工程研究, 2020, 24(36): 5837-5842. DOI: 10.3969/j.issn.2095-4344.2933.
[16] Ryu JI, Bak KH, Yi HJ, et al. Evaluation of the efficacy of titanium mesh cages with posterior C1 lateral mass and C2 pedicle screw fixation in patients with atlantoaxial instability[J]. World Neurosurg, 2016, 90: 103-108. DOI: 10.1016/j.wneu.2016.02.087.
[17] Guo X, Ni B, Zhao W, et al. Biomechanical assessment of bilateral C1 laminar hook and C1-2 transarticular screws and bone graft for atlantoaxial instability[J]. J Spinal Disord Tech, 2009, 22(8): 578-585. DOI: 10.1097/BSD.0b013e31818da3fe.
[18] Floyd T, Grob D. Translaminar screws in the atlas[J]. Spine (Phila Pa 1976), 2000, 25(22): 2913-2915. DOI: 10.1097/00007632-200011150-00013.
PDF(2881 KB)

Accesses

Citation

Detail

Sections
Recommended

/