Establishment of a highly efficient method for β-thalassemia CD17 (A > T) point mutation in HEK293T cell line

Liu Yongxiang, Cai Bing, Xu Yan, Zeng Yanhong, Zhou Shaohu, Mai Qingyun

Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (5) : 581-586.

PDF(4739 KB)
PDF(4739 KB)
Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (5) : 581-586. DOI: 10.13418/j.issn.1001-165x.2022.5.14

Establishment of a highly efficient method for β-thalassemia CD17 (A > T) point mutation in HEK293T cell line

  • Liu Yongxiang1,2, Cai Bing2, Xu Yan2, Zeng Yanhong2, Zhou Shaohu1, Mai Qingyun2*
Author information +
History +

Abstract

Objective   To establish an efficient method for constructing HEK293T cell line of β-thalassemia CD17 (A>T) point mutation.   Methods    Using a modified CRISPR/Cas9 gene editing technology, termed ‘CORRECT’ (consecutive re-Guide or re-Cas steps to erase CRISPR/Cas-blocked targets) for scarless genome editing. Firstly, the cleavage of HBB gene in HEK293T cells was induced by electro-transfection of CRISPR/Cas9 plasmid. Then, single-stranded oligo DNA nucleotides (ssODNs) with CD17 (A>T) point mutation and synonymous mutation (G>T) were used as homologous templates for repair. The HEK293 T cell line with β-globin CD17 (A>T) point mutation was obtained by monoclonal screening and sequencing analysis.    Results    A HEK293T cell line with point mutation of β-thalassemia CD17 (A>T) genotype was successfully obtained by 'CORRECT' technique. The introduction of synonymous mutation might reduced re-editing of Cas9 protein to the target, which greatly improved the efficiency of single base mutation.    Conclusions    The point mutation HEK293T cell line can be efficiently obtained by 'CORRECT' technique, which is of great significance for the establishment of single base mutation cell lines and animal models.

Key words

β-thalassemia;  /   / CRISPR/Cas9;  /   / Synonymous mutation;  /   / Single base mutation

Cite this article

Download Citations
Liu Yongxiang, Cai Bing, Xu Yan, Zeng Yanhong, Zhou Shaohu, Mai Qingyun. Establishment of a highly efficient method for β-thalassemia CD17 (A > T) point mutation in HEK293T cell line[J]. Chinese Journal of Clinical Anatomy. 2022, 40(5): 581-586 https://doi.org/10.13418/j.issn.1001-165x.2022.5.14

References

[1]  Kumar R, Sagar C, Sharma D, et al. β-globin genes: mutation hot-spots in the global thalassemia belt [J]. Hemoglobin, 2015, 39(1): 1-8. DOI:10.3109/03630269.2014.985831.
[2]  Cao A, Galanello R. Beta-thalassemia [J]. Geneti Med, 2010, 12(2): 61-76. DOI:10.1097/GIM.0b013e3181cd68ed.
[3]  Kwart D, Paquet D, Teo S, et al. Precise and efficient scarless genome editing in stem cells using CORRECT [J]. Nat Protoc, 2017, 12(2): 329-354. DOI:10.1038/nprot.2016.171.
[4]  Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9 [J]. Nature, 2016, 533(7601): 125-129. DOI:10.1038/nature17664.
[5]  Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819-823.DOI:10.1126/science.1231143.
[6]  Yang B, Yang L, Chen J. Development and application of base editors [J]. CRISPR J, 2019, 2(2): 91-104. DOI:10.1089/crispr.2019.0001.
[7]  Zuo E, Sun Y, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos [J]. Science, 2019, 364(6437): 289-292. DOI:10.1126/science.aav9973.
[8] Bier E, Harrison MM, O'Connor-Giles KM, et al. Advances in Engineering the Fly Genome with the CRISPR-Cas System [J]. Genetics, 2018, 208(1): 1-18. DOI:10.1534/genetics.117.1113.
[9]  Yu Z, Chen H, Liu J, et al. Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome [J]. Biol Open, 2014, 3(4): 271-280. DOI:10.1242/bio.20147682.
[10]Steyer B, Bu Q, Cory E, et al. Scarless genome editing of human pluripotent stem cells via transient puromycin selection [J]. Stem Cell Reports, 2018, 10(2): 642-654. DOI:10.1016/j.stemcr.2017.12.004.
[11]Zorin B, Hegemann P, Sizova I. Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii [J]. Eukaryot Cell, 2005, 4(7): 1264-1272. DOI:10.1128/ec.4.7.1264-1272.2005.
[12]Aarts M, Dekker M, de Vries S, et al. Generation of a mouse mutant by oligonucleotide-mediated gene modification in ES cells [J]. Nucleic Acids Res, 2006, 34(21): e147. DOI:10.1093/nar/gkl896.
[13]Niu X, He W, Song B, et al. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells [J]. J Biol Chem, 2016, 291(32): 16576-16585. DOI:10.1074/jbc.M116.719237.
[14]Strouse B, Bialk P, Niamat RA, et al. Combinatorial gene editing in mammalian cells using ssODNs and TALENs [J]. Sci Rep, 2014, 4: 3791. DOI:10.1038/srep03791.
[15]Inui M, Miyado M, Igarashi M, et al. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system [J]. Sci Rep, 2014, 4: 5396. DOI:10.1038/srep05396.
PDF(4739 KB)

Accesses

Citation

Detail

Sections
Recommended

/