Effects of Caffeine and Sodium Benzoate on learning and memory ability in rats and its mechanism

Li Jianzhong, Hao Xinghua, Wu Haiping, Wu Zhibing, Zhang Lifang

Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (4) : 432-437.

PDF(5570 KB)
PDF(5570 KB)
Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (4) : 432-437. DOI: 10.13418/j.issn.1001-165x.2022.4.11

Effects of Caffeine and Sodium Benzoate on learning and memory ability in rats and its mechanism

  • Li Jianzhong1,2, Hao Xinghua3, Wu Haiping1,2, Wu Zhibing1, Zhang Lifang4*
Author information +
History +

Abstract

Objective   To investigate the effects of Caffeine and Sodium Benzoate on learning and memory ability and hippocampal synaptic plasticity in rats.  Methods  Thirty-three SD rats were randomly divided into a control (C), a low-dose Caffeine and Sodium Benzoate (A-LD) and a high-dose Caffeine and Sodium Benzoate group (A-HD), with 11 rats in each group. They were administered by gavage once a day (C: 1 ml of normal saline; A-LD: 60 mg/kg of Caffeine and Sodium Benzoate; A-HD: 120 mg/kg of Caffeine and Sodium Benzoate) for 60 days. The learning and memory ability was detected by Morris water maze test.The expression of synaptophysin (SYN) and postsynaptic density 95 (PSD95) in hippocampus of rats in each group were detected by immunohistochemical staining and Western blot. The dendritic spine density in hippocampal CA1 region was detected by Golgi staining, and the synaptic numerical density (Nv) and surface density (Sv) were detected by transmission electron microscopy and stereological methods.   Results    Morris water maze test showed that there was no significant difference in escape latency between C group and A-LD group (P>0.05). While the escape latency significantly prolonged and the time spent in target quadrant and number of platform crossings significantly reduced in A-HD group compared with C group (P<0.01). Immunohistochemical staining and Western blot showed that there was no significant difference in the expression of SYN and PSD95 in hippocampus between C group and A-LD group (P>0.05), while the expression of SYN and PSD95 in hippocampus of A-HD group significantly reduced compared with C group (P<0.01). Golgi staining and transmission electron microscopy showed that there was no significant difference in the dendritic spine density, Nv and Sv between C group and A-LD group (P>0.05), while the dendritic spine density, Nv and Sv of A-HD group significantly reduced compared with C group (P<0.01).   Conclusions   The high-dose Caffeine and Sodium Benzoate can reduce the hippocampal synaptic plasticity of rats, resulting in the impairment of learning and memory ability.

Key words

Caffeine and Sodium Benzoate /   /   / Learning ability /   /   / Memory ability /   /   / Hippocampus / Synaptic plasticity

Cite this article

Download Citations
Li Jianzhong, Hao Xinghua, Wu Haiping, Wu Zhibing, Zhang Lifang. Effects of Caffeine and Sodium Benzoate on learning and memory ability in rats and its mechanism[J]. Chinese Journal of Clinical Anatomy. 2022, 40(4): 432-437 https://doi.org/10.13418/j.issn.1001-165x.2022.4.11

References

[1]  李慧,蒙淑红. 烫吸安钠咖对冠心病患者超敏C反应蛋白及纤维蛋白原的影响[J]. 内蒙古医学杂志, 2017, 49(3): 273-275. DOI: 10.16096/J.cnki.nmgyxzz. 2017. 49. 03.005.
[2]  范俊平, 李宜瑶, 冯瑞娥, 等. 安钠咖吸入引起的机化性肺炎[J]. 中华结核和呼吸杂志, 2021, 44(6): 604-608. DOI: 10.3760/cma.j.cn112147 -20210111-00037.
[3]  Sun WL, Zhang LF, Liu H, et al. Performance of brain MRI of a two generation father-and-son family with long-term smoking caffeinum natrio benzoicum[J]. Chinese Med J, 2010, 123(24): 3714-3716. DOI: 10.3760/cma.j.issn.0366-6999.2010.24.036.
[4]  邢玉平, 张丽芳, 王玉芬, 等. 安钠咖相关脑损害三例临床与磁共振成像特点[J]. 中华神经科杂志, 2009, 42(11): 754-757. DOI:  10.3760/cma.j.issn.1006-7876.2009.11.012.
[5]  路海霞, 张丽芳, 祁金顺. 安钠咖对大鼠学习记忆能力及海马神经元形态的影响[J]. 中华神经医学杂志, 2015, 14(5): 464-468. DOI:  10.3760/cma.j.issn.1671-8925.2015.05.007.
[6]  郝志国. 西北B市安钠咖滥用问题思考[J]. 青年与社会, 2019, (13): 233-234.
[7]  Ikram M, Park TJ, Ali T, et al. Antioxidant and neuroprotective effects of caffeine against Alzheimer's and Parkinson's Disease: insight into the role of Nrf-2 and A2AR signaling[J]. Antioxidants (Basel), 2020, 9(9): 902. DOI: 10.3390/antiox9090902.
[8]  Tellone E, Galtieri A, Russo A, et al. Protective effects of the caffeine against neurodegenerative diseases[J]. Curr Med Chem, 2019, 26(27): 5137-5151. DOI: 10.2174/0929867324666171009104040.
[9]  Zimmerberg B, Carr KL, Scott A, et al. The effects of postnatal caffeine exposure on growth, activity and learning in rats[J]. Pharmacol Biochem Behav, 1991, 39(4): 883-888. DOI: 10.1016/0091-3057(91)90048-7.
[10]Pan HZ, Chen HH. Hyperalgesia, low-anxiety, and impairment of avoidance learning in neonatal caffeine-treated rats[J]. Psychophar macology (Berl), 2007, 191(1): 119-125. DOI: 10.1007/s00213-006-0613-y.
[11] Soellner DE, Grandys T, Nunez JL. Chronic prenatal caffeine exposure impairs novel object recognition and radial arm maze behaviors in adult rats[J]. Behav Brain Res, 2009, 205(1): 191-199. DOI: 10.1016/j.bbr.2009.08.012.
[12] Li YM, Zhang WN, Shi RX, et al. Prenatal caffeine damaged learning and memory in rat offspring mediated by ARs/PKA/CREB/BDNF pathway[J]. Physiol Res, 2018, 67(6): 975-983. DOI: 10.33549/physiolres.933906.
[13] Urushihata T, Takuwa1 H, Higuchi Y, et al. Inhibitory effects of caffeine on gustatory plasticity in the nematode Caenorhabditis elegans[J]. Biosci Biotechnol Biochem, 2016, 80(10): 1990-1994. DOI: 10.1080/09168451.2016.1191327.
[14] Almosawi S, Baksh H, Qareeballa A, et al. Acute administration of caffeine: the effect on motor coordination, higher brain cognitive functions, and the social behavior of BLC57 mice[J]. Behav Sci (Basel), 2018, 8(8): 65. DOI:10.3390/bs8080065.
[15] Sallaberry C, Ardais AP, Rocha A, et al. Sex differences in the effects of pre- and postnatal caffeine exposure on behavior and synaptic proteins in pubescent rats[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 81: 416-425. DOI: 10.1016/j.pnpbp.2017.08.015.
[16] Corodimas KP, Pruitt JC, Stieg JM. Acute exposure to caffeine selectively disrupts context conditioning in rats[J]. Psychophar macology (Berl), 2000, 152(4): 376-382. DOI: 10.1007/s002130000 557.
[17]Costenla AR, Cunha RA, de Mendonça A. Caffeine, adenosine receptors, and synaptic plasticity[J]. J Alzheimers Dis, 2010, 20(Suppl 1): S25-S34. DOI: 10.3233/JAD-2010-091384.
[18]Blaise JH, Park JE, Bellas NJ, et al. Caffeine consumption disrupts hippocampal long-term potentiation in freely behaving rats[J]. Physiol Rep, 2018, 6(5): e13632. DOI: 10.14814/phy2.13632.
[19] Hanajima R, Tanaka N, Tsutsumi R, et al. Effect of caffeine on long-term potentiation-like effects induced by quadripulse transcranial magnetic stimulation[J]. Exp Brain Res, 2019, 237(3): 647-651. DOI: 10.1007/s00221-018-5450-9.
[20] 刘畅, 范文娟, 程维杰, 等. 小鼠海马CA1区锥体神经元树突棘的发育[J]. 解剖学报, 2012, 43(1): 1-6. DOI: 10.3969/j.issn.0529-1356. 2012. 01.001.
[21] 洪苗苗, 赵恩聪, 陈丽敏, 等. 电针对SAMP8小鼠皮质及海马突触素和突触后致密物-95表达的影响[J]. 中国中医药信息杂志, 2021, 28(1): 49-53. DOI: 10.19879/j.cnki.1005-5304.202007059.
[22] Ciruela F, Casadó V, Rodrigues RJ, et al. Presynaptic control of striatal glutama tergic neurotransmission by adenosine A1-A2A receptor heteromers[J]. J Neurosci, 2006, 26(7): 2080-2087. DOI: 10.1523/JNEUROSCI. 3574-05.2006.
[23] Costenla AR, de Mendonça A, Ribeiro JA. Adenosine modulates synaptic plasticity in hippocampal slices from aged rats[J]. Brain Res, 1999, 851(1-2): 228-234. DOI: 10.1016/s0006-8993(99)02194-0.
[24] Fontinha BM, Delgado-García JM, Madroñal N, et al. Adenosine A2A receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice[J]. Neuropsy chopharmacology, 2009, 34(7): 1865-1874. DOI: 10.1038/npp.2009.8.
[25] Rebola N, Lujan R, Cunha RA, et al. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses[J]. Neuron, 2008, 57(1): 121-134. DOI: 10.1016/j.neuron.2007.11.023.
[26] Costenla AR, Diógenes MJ, Canas PM, et al. Enhanced role of adenosine A(2A) receptors in the modulation of LTP in the rat hippocampus upon ageing[J]. Eur J Neurosci, 2011, 34(1): 12-21. DOI: 10.1111/j.1460-9568.2011.07719.x.
[27] Sekino Y, Ito K, Miyakawa H, et al. Adenosine (A2) antagonist inhibits induction of long-term potentiation of evoked synaptic potentials but not of the population spike in hippocampal CA1 neurons[J]. Biochem Biophys Res Commun, 1991, 181(3): 1010-1014. DOI: 10.1016/0006-291x(91)92037-k.
[28] Kessey K, Trommer BL, Overstreet LS, et al. A role for adenosine A2 receptors in the induction of long-term potentiation in the CA1 region of rat hippocampus[J]. Brain Res, 1997, 756(1-2): 184-190. DOI: 10.1016/s0006-8993(97)00148-0.
PDF(5570 KB)

Accesses

Citation

Detail

Sections
Recommended

/