Retinoic acid improves lipopolysaccharide-induced vascular inflammation and oxidative stress through TLR4/NF-κB signaling pathway

Li Chen, Zhang Yingjie, Sun Yang, Wang Hongxin

Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (3) : 303-308.

PDF(3904 KB)
PDF(3904 KB)
Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (3) : 303-308. DOI: 10.13418/j.issn.1001-165x.2022.3.11

Retinoic acid improves lipopolysaccharide-induced vascular inflammation and oxidative stress through TLR4/NF-κB signaling pathway

  • Li Chen1, Zhang Yingjie1*, Sun Yang2, Wang Hongxin2*
Author information +
History +

Abstract

Objective    To study potential protective effects of retinoic acid (RA) on lipopolysaccharide (LPS)-induced vascular inflammation and oxidative stress and explore its possible molecular mechanism. Methods After SD rats were given RA and TLR4 inhibitors by oral gavage for 2 weeks, except for the control group, LPS group, RA 3 mg/kg group, RA 15 mg/kg group and TLR4 inhibitor group (TAK-242, 3 mg/kg), LPS (10 mg/kg) was injected intraperitoneally to establish a vascular inflammation model. Vascular tension measurement system was used to detect vasodilation function, nitrate reductase method was used to detect nitric oxide (NO) content in rat serum. Serum IL-18, IL-1β, TNF-α, IL-6 and GSH- px level was detected by ELISA method, WST-1 and TBA methods were used to detect the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) in the serum respectively, DHE fluorescent probe was used to detect the level of vascular reactive oxygen species (ROS), and immunohistochemical method to detect the expression of vascular NF-κB p65, Western blotting to detect the expression of vascular TLR4, eNOS and p-eNOS.    Results    Compared with the LPS group, RA can improve the vasodilation function, increase the levels of p-eNOS and NO, decrease the serum inflammatory factors IL-18, IL-1β, TNF-α, IL-6 level, and reduce the serum MDA and ROS, increase the production of SOD and the release of GSH-px in the serum, and down-regulate the expression levels of vascular TLR4 and NF-κB p65. In addition, the effect of RA on LPS-induced vascular inflammation and oxidative stress was similar to that of TLR4 inhibitors. Conclusions RA has an inhibitory effect on LPS-induced vascular inflammation and oxidative stress, through the TLR4/NF-κB p65 signaling pathway.

Key words

Retinoic acid;  /   / TLR4/NF-κB;  /  Vascular endothelial dysfunction;  /  Inflammation;  /  Oxidative stress

Cite this article

Download Citations
Li Chen, Zhang Yingjie, Sun Yang, Wang Hongxin. Retinoic acid improves lipopolysaccharide-induced vascular inflammation and oxidative stress through TLR4/NF-κB signaling pathway[J]. Chinese Journal of Clinical Anatomy. 2022, 40(3): 303-308 https://doi.org/10.13418/j.issn.1001-165x.2022.3.11

References

[1] Dinh QN, Chrissobolis S, Diep H, et al. Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxidative stress, but not hypertension [J]. Pharmacol Res, 2017, (116):70-76. DOI: 10.1016/j.phrs.2016.12.032.
[2] Dinh QN, Drummond GR , Sobey CG , et al. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension[J]. Biomed Res Int, 2014, 2014::406960. DOI: 10.1155/2014/406960.
[3] Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in hypertension[J]. Hypertension, 2017, 70(4):660-667. DOI: 10.1161/HYPERTENSIONAHA.117.07802. 
[4] Siti HN , Kamisah Y , Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review)[J].Vascul Pharmacol,2015,(71):40-56.DOI:10.1016/j.vph.2015. 03.005.
[5] Mancini A, Di Segni C, Raimondo S, et al. Thyroid hormones, oxidative stress, and inflammation[J]. Mediators Inflamm, 2016, (2016): 6757154. DOI: 10.1155/2016/6757154.
[6] Płóciennikowska A, Hromada-Judycka A, Borzęcka K, et al. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling[J]. Cell Mol Life Sci, 2015, 72(3):557–581. DOI: 10.1007/s00018-014-1762-5.
[7]  Lugrin J, Rosenblatt-Velin N , Parapanov R , et al. The role of oxidative stress during inflammatory processes[J]. Biol Chem, 2014, 395(2):203-230. DOI: 10.1515/hsz-2013-0241.
[8] Das BC, Thapa P, Karki R, et al. Retinoic acid signaling pathways in development and diseases[J]. Bioorg Med Chem, 2014, 22(2):673-683. DOI:10.1016/j.bmc.2013.11.025. 
[9] Penny HL, Prestwood TR, Bhattacharya N, et al. Restoring retinoic acid attenuates intestinal inflammation and tumorigenesis in APCMin/+ Mice[J]. Cancer Immunol Res, 2016, 4(11):917-926. DOI: 10.1158/2326-6066.CIR-15-0038.
[10] Tokarz P, Piastowska-Ciesielska AW, Kaarniranta K, et al. All-Trans Retinoic Acid Modulates DNA Damage Response and the Expression of the VEGF-A and MKI67 Genes in ARPE-19 Cells Subjected to Oxidative Stress[J]. Int J Mol Sci, 2016, 17(6):898. DOI: 10.3390/ijms17060898.
[11] Yuyun MF, Ng LL, André Ng G. Endothelial dysfunction, endothelial nitric oxide bioavailability, tetrahydrobiopterin, and 5-methyltetrahy drofolate in cardiovascular disease. Where are we with therapy[J]? Microvasc Res,2018,(119):7-12. DOI:10.1016/j.mvr. 2018. 03.012.
[12]Deng G, Long Y, Yu YR, et al. Adiponectin directly improves endothelial dysfunction in obese rats through the AMPK–eNOS Pathway[J]. Int J Obes(Lond), 2009, 34(1):165-171. DOI:10.1038/ijo.2009.205.
[13] Wadley AJ, Veldhuijzen van Zanten JJ, Aldred S. The interactions of oxidative stress and inflammation with vascular dysfunction in ageing: the vascular health triad[J]. Age, 2013, 35(3):705-718. DOI: 10.1007/s11357-012-9402-1.
PDF(3904 KB)

Accesses

Citation

Detail

Sections
Recommended

/