Finite element analysis of three kinds of internal fixation method of posterior axis in the condition of severe osteoporosis

Yao Wenjun, Li Cai , Xu Gang , Ye Yuchen , Zhu Kun , Wang Yanli , Zhang Changchun

Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (2) : 198-203.

PDF(3425 KB)
PDF(3425 KB)
Chinese Journal of Clinical Anatomy ›› 2022, Vol. 40 ›› Issue (2) : 198-203. DOI: 10.13418/j.issn.1001-165x.2022.2.15

Finite element analysis of three kinds of internal fixation method of posterior axis in the condition of severe osteoporosis

  • Yao Wenjun, Li Cai , Xu Gang , Ye Yuchen , Zhu Kun , Wang Yanli , Zhang Changchun*
Author information +
History +

Abstract

Objective To analyze the biomechanical characteristics of posterior axis different planting methods in upper cervical vertebra under severe osteoporosis (SOP).     Methods    A CT scanning on cervical vertebra was performed on a healthy adult man.  Combined with the finite element pre-processing software, the atlantoaxial instability model (C1~C2) of SOP was stimulated by setting material properties. According to the surgical plan, posterior bilateral atlas pedicle screw (B-C1PS)+ Axis of three different ways of planting nail fixation was established: axis bilateral pedicle screw (B-C2PS, model A) fixation, axis bilateral laminar screw (B-C2TL, model B) fixation, B-C1PS combined with B-C2TL fixation(model C). The range of motion of C1-C2 joint, C1 displacement and C2 screw stress distribution of the three internal fixation methods were analyzed under the bending extension, lateral bending and axial rotation conditions of the finite element model.    Results    The finite element model of C1-C2 instability in the SOP, Model C had the lowest range of motion of C1-C2 joint, C1 displacement in different conditions. Fixed screw under the maximum stress of C2 joint combined fixation was smaller than that of single fixation. The maximum stress of pedicle screw of the axis in the Model C was less than that of Model B under various working conditions, that of pedicle screw in the Model C was less than that of Model A. In Model C, the stress was mainly concentrated at C2PS roots and the joint between atlanto-axial vertebral pedicle screw and screw rod.    Conclusions    The inner fixation stability of Model C is better than that of Model A and Model B under SOP condition. The stress of axis is  dispersed, and the axis screw is less prone to postoperative fatigue loosening and prolapse.

Key words

Atlantoaxial instability /  Severe osteoporosis /  Pedicle screw /  Laminar screw /  Finite element 

Cite this article

Download Citations
Yao Wenjun, Li Cai , Xu Gang , Ye Yuchen , Zhu Kun , Wang Yanli , Zhang Changchun. Finite element analysis of three kinds of internal fixation method of posterior axis in the condition of severe osteoporosis[J]. Chinese Journal of Clinical Anatomy. 2022, 40(2): 198-203 https://doi.org/10.13418/j.issn.1001-165x.2022.2.15

References

[1]  Feng S, Tian W, Sun Y, et al. Effect of robot-assisted surgery on lumbar pedicle screw internal fixationin patients with osteoporosis[J]. World Neurosurg, 2019, 125:e1057-e1062. DOI:10.1016/j.wneu.2019.01.243.
[2]  Wang W, Liu C, Li J, et al. Comparison of the fenestrated pedicle screw and conventional pedicle screw in minimally percutaneous fixation for the treatment of spondylolisthesis with osteoporotic spine[J]. Clin Neurol Neurosurg, 2019, 183: 105377. DOI:10.1016/j.clineuro. 2019. 105377.
[3]  Lee DG, Park CK, Lee DC. Clinical and radiological comparison of 2 level anterior lumbar interbody fusion with posterolateral fusion and percutaneous pedicle screw in elderly patients with osteoporosis[J]. Medicine (Baltimore), 2020, 99(10): e19205. DOI: 10.1097/MD.00000 00000019205.
[4] Tarukado K, Tono O, Doi T. Simultaneous use of both bilateral in tralaminar and pedicle screw for C2 stabilization [J]. Asian Spine J, 2015,9(5): 789-793. DOI:10.4184/asj.2015.9.5.789.
[5]  唐晓军, 曹奇, 陈亮元, 等. 枢椎椎弓根螺钉进钉点及植钉方式的解剖研究[J]. 中国修复重建外科杂志, 2015, 29(2):175-178. DOI:10.7507/1002-1892.20150038.
[6]  Byeon Y, Lee BJ, Park JH. Freehand placement of the C1 pedicle screw using direct visualization of the pedicle anatomy and serial dilatation[J]. Korean J Neurotrauma, 2020, 16(2):207-215. DOI:10.13004/kjnt. 2020.16.e15.
[7]  姜泽威, 汤舒婷, 周纪平, 等. 3D打印导板辅助与徒手寰枢椎弓根钉置入比较[J].中国矫形外科杂志, 2021, 29(10):880-884. DOI:10.3977/j.issn.1005-8478.2021.10.04.
[8]  Wang XD, Feng MS, Hu YC. Establishment and finite element analysis of a three-dimensional dynamic model of upper cervical spine instability[J].Orthop Surg, 2019, 11(3):500-509. DOI:10.1111/os.12474.
[9] Wang HW, Ma LP, Yin YH, et al. Biomechanical rationale for the development of atlantoaxial instability and basilar invagination in patients with occipitalization of the atlas: a finite element analysis[J]. World Neurosurg, 2019,127:e474-e479. DOI:10.1016/j.wneu. 2019. 03. 174.
[10]Liao JC. Impact of osteoporosis on different type of short-segment posterior instrumentation for thoracolumbar burst fracture- a finite element analysis[J]. World Neurosurg, 2020, 139:e643-e651. DOI:10.1016/j.wneu.2020.04.056.
[11]Nobakhti S, Shefelbine SJ. On the relation of bone mineral density and the elastic modulus in healthy and pathologic bone[J]. Curr Osteoporos Rep, 2018, 16(4):404-410. DOI: 10.1007/s11914-018-0449-5.
[12]Brolin K, Halldin P. Development of a finite element model of the upper cervical spineand a parameter study of ligament characteristics[J]. Spine, 2004, 29(4):376-385. DOI: 10.1097/01.BRS.0000090820. 99182.2D.
[13]Lasswell TL, Cronin DS, Medley JB, et al. Incorporating ligament laxity in a finite element model for the upper cervical spine[J]. Spine J, 2017, 17(11):1755-1764. DOI:10.1016/j.spinee.2017.06.040.
[14] Zheng Y, Wang J, Liao S, et al. Biomechanical evaluation of a novel integrated artificial axis: a finite element study [J]. Medicine(Baltimore),2017, 96(47):e8597.DOI:10.1097/MD.0000000000008597.
[15] Panjabi M, Dvorak J, Duranceau J, et al. Three-dimensional movements of the upper cervical spine [J]. Spine (Phila Pa1976), 1988, 13(7): 726-730. DOI: 10.1097/00007632-198807000-00003.
[16] 陈树金, 马向阳, 杨进城, 等.有限元法分析寰-枢椎椎弓根螺钉内固定的生物力学变化[J]. 中国组织工程研究, 2018, 22(31): 4970-4974. DOI: 10.3969/j.issn.2095-4344.0362.
[17] Goel A, Laheri V. Plate and screw fixation for atlanto-axial subluxation[J]. Acta Neurochirurgica, 1994, 129(129):47-53. DOI: 10.1007/BF01400872.
[18 ] Sai Kiran NA, Sivaraju L, Vidyasagar K, et al. Safety and accuracy of anatomic and lateral fluoroscopic-guided placement of C2 pars/pedicle screws and C1 lateral mass screws, and freehand placement of C2 laminar screws[J]. World Neurosurg, 2018,118:e304-e315. DOI:10.1016/j.wneu.2018.06.184.
[19] Wang Y, Wang C, Yan M. Clinical outcomes of atlantoaxial dislocation combined with high-riding vertebral artery using C2 translaminar screws[J]. World Neurosurg, 2019, 122:e1511-e1518. DOI:10.1016/j.wneu.2018.11.092.[20] Wright NM. Posterior C2 fixation using bilateral,crossing C2 laminar screws:case series and technical note [J]. J Spinal Disord Tech, 2004, 17(2):158-162. DOI: 10.1097/00024720-200404000-00014.
[21] 邓轩赓, 熊小明, 石华刚, 等. 枢椎椎板钉治疗可复性寰枢椎脱位的近期疗效[J]. 中国修复重建外科杂志, 2019, 33(11):1419-1423. DOI:10.7507/1002-1892.201902026.
[22] Ikuta K, Sakamoto K, Hotta K, et al. Occipital bone erosion induced by C1 pedicle screw as a late complication of atlantoaxial fixation: a case report and literature review[J].Spine Deform, 2021, 9(2):621-625. DOI: 10.1007/s43390-020-00222-1.
[23] Clifton W, Nottmeier E, Edwards S, et al. Development of a novel 3D printed phantom for teaching neurosurgical trainees the freehand technique of C2 laminar screw placement[J]. World Neurosurg, 2019, 129: e812-e820. DOI: 10.1016/j.wneu.2019.06.038.
[24] Matsukawa K, Yato Y, Imabayashi H, et al. Impact of screw diameter and length on pedicle screw fixation strength in osteoporotic vertebrae: a finite element analysis[J]. Asian Spine J, 2021,15(5):566-574. DOI:10.31616/asj.2020.0353. 
[25]Okuyama K,Sato K,Abe E, et al. Stability of transpedicle screwing for the osteoporotic spine:an in vitro study of the mechanical stability[J]. Spine, 1993, 18(15):2240-2245. DOI:10.1097/00007632-199311 000- 00016.
[26]Panagiotopoulou O. Finite element analysis(FEA): applying an engineering method to functional morphology in anthropology and human biology[J]. Ann Hum Biol, 2009, 36(5):609-623. DOI:10.1080/03014460903019879.
[27] Kothari MK, Dalvie SS, Gupta S, et al. The C2 pedicle width, pars length, and laminar thickness in concurrent ipsilateral ponticulus posticus and high-riding vertebral artery: a radiological computed tomography scan-based study[J]. Asian Spine J, 2019, 13(2): 290-295. DOI: 10.31616/asj.2018.0057.
[28] Formentin C, Andrade EJ, Maeda FL, et al. Axis screws: results and complications of a large case series[J]. Rev Assoc Med Bras(1992), 2019, 65(2): 198-203. DOI: 10.1590/1806-9282.65.2.198.
PDF(3425 KB)

Accesses

Citation

Detail

Sections
Recommended

/