Stress distribution of the scapholunate interosseous ligament under different load conditions on the wrist

Wei Mingjie, Xu Yujian, Wu Yipeng, Wang Teng, Wu Huan, Yuan Libo, Tang Wenbao, Guo Xiaojv, Xu Yongqing

Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (5) : 586-592.

PDF(7218 KB)
PDF(7218 KB)
Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (5) : 586-592. DOI: 10.13418/j.issn.1001-165x.2021.05.016

Stress distribution of the scapholunate interosseous ligament under different load conditions on the wrist

  • Wei Mingjie1, Xu Yujian3, Wu Yipeng2, Wang Teng2, Wu Huan3, Yuan Libo1, Tang Wenbao1, Guo Xiaojv1, Xu Yongqing2
Author information +
History +

Abstract

Objective To study the stress distribution of the scapholunate interosseous ligament(SLIL) of the wrist joint during different movements of the wrist by established a three-dimensional finite element model of the wrist joint. Methods The CT data of normal wrist joints were selected and imported into Mimics software to construct a three-dimensional finite element model of the wrist joint.. The SLIL stress distribution of the wrist joint under different motion directions was analyzed. Results With the increasing of the dorsiflexion angle, the SLIL stress increased. When the dorsiflexion angle increased to 90°, the maximum stress of SLIL was 1.3787 MPa. When the dorsiflexion angle was 30°, the maximum stress of SLIL was 0.1596 MPa. When the angle of palmar curvature increased to 90°, the maximum stress of SLIL reduced to 0.2452 MPa. The maximum stress of SLIL was 0.8145 MPa at 25° radial deviation, and 0.1356 MPa at 25° ulnar deviation. The maximum stress of SLIL was 0.4465 MPa when the radial force was applied to the wrist joints at 20 N, and 0.4635 MPa when the ulnar force was applied at 20 N. Conclusions The three-dimensional finite element model of the wrist joint can simulate the force of SLIL in different wrist movements. The stress of SLIL is maximum when the wrist joint dorsiflexion angle reaches 90°. When doing ulnar deviation and radial deviation, the maximum stress of SLIL radial deviation is about 6 times of the maximum stress of ulnar deviation at the same deflection angle.

Key words

Carpal joints /  Scaphoid bone /  Lunate bone /  Interosseous ligament /  Finite element analysis

Cite this article

Download Citations
Wei Mingjie, Xu Yujian, Wu Yipeng, Wang Teng, Wu Huan, Yuan Libo, Tang Wenbao, Guo Xiaojv, Xu Yongqing. Stress distribution of the scapholunate interosseous ligament under different load conditions on the wrist[J]. Chinese Journal of Clinical Anatomy. 2021, 39(5): 586-592 https://doi.org/10.13418/j.issn.1001-165x.2021.05.016

References

[1]  刘波. 腕关节损伤治疗相关争议问题探讨[J]. 中华创伤杂志, 2018,34(9):769-772. DOI: 10.3760/cma.j.issn.1001-8050.2018.09.001.
[2] Berger RA. The gross and histologic anatomy of the scapholunate interosseous ligament[J]. J Hand Surg Am, 1996, 21(2):170-178. DOI: 10.1016/S0363-5023(96)80096-7.
[3]  韩利军. 手舟月骨间韧带和月三角骨间韧带的解剖学特点[J]. 中国组织工程研究与临床康复, 2009,13(37):7318-7321. DOI: 10.3969/j.issn.1673-8225.2009.37.024.
[4]  李秀忠, 蔡锦方, 张元信,  等. 近侧列腕骨间关节及韧带的应用解剖学观察[J]. 中国临床解剖学杂志, 2012,30(1):22-25.  DOI:10.13418/j.issn.1001-165x.2012.01.005.
[5]  徐永清, 钟世镇, 徐达传, 等. 腕关节韧带解剖及组织学特性研究[J]. 中华创伤骨科杂志, 2005,7(12):1147-1151. DOI: 10.3760/cma.j.issn.1671-7600.2005.12.013.
[6]  陈延荣. 桡骨远端骨折畸形愈合后腕关节的生物力学变化 [D].苏州大学, 2013.
[7]  何川, 李彦林, 张振光, 等. 不同屈曲状态下膝关节韧带生物力学的有限元分析[J]. 中国运动医学杂志, 2015, 34(7): 662-669. DOI: CNKI:SUN:YDYX.0.2015-07-009.
[8]  艾登超. 腕关节三维有限元精细模型的建立及其验证 [D]. 天津医科大学, 2017.
[9] Shin SS, Moore DC, McGovern RD, et al. Scapholunate ligament reconstruction using a bone-retinaculum-bone autograft: a biomechanic and histologic study[J]. J Hand Surg Am, 1998, 23(2): 216-221. DOI: 10.1016/S0363-5023(98)80116-0.
[10]李秀忠, 赵卫东, 钟世镇, 等. 舟月骨间韧带的解剖及生物力学研究[J]. 中华骨科杂志, 2005,25(4): 214-217. DOI: 10.3760/j.issn:0253-2352.2005.04.007.
[11]Rybicki EF, Simonen FA, Weis Jr EB. On the mathematical analysis of stress in the human femur[J]. J Biomech, 1972, 5(2):203-215. DOI: 10.1016/0021-9290(72)90056-5.
[12]Sun J, Yan S, Jiang Y, et al. Finite element analysis of the valgus knee joint of an obese child[J]. Biomed Eng Online, 2016,15(Suppl 2):158-158. DOI: 10.1186/s12938-016-0253-3.
[13]Ren D, Liu Y, Zhang X, et al. The evaluation of the role of medial collateral ligament maintaining knee stability by a finite element analysis[J]. J Orthop Surg Res, 2017,12(1):64-64. DOI: 10.1186/s13018-017-0566-3.
[14]Shriram D, Praveen Kumar G, Cui F, et al. Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis[J]. Sci Rep, 2017, 7(1):6011-6011. DOI: 10.1038/s41598-017-06271-3.
[15]Gíslason MK, Stansfield B, Nash DH. Finite element model creation and stability considerations of complex biological articulation: The human wrist joint[J]. Med Eng Phys, 2010, 32(5):523-531. DOI: 10.1016/j.medengphy.2010.02.015.
[16]朱海波, 朱建民, 马南, 等. 基于软骨和韧带的全腕关节有限元模型建立和舟状骨生物力学研究[J]. 上海医学, 2014,37(7):602-605+541. DOI: CNKI:SUN:SHYX.0.2014-07-018.
[17]徐永清, 钟世镇, 赵卫东, 等. 部分腕关节韧带生物力学特性的研究[J]. 中华手外科杂志, 2003, 19(1):33-35. DOI: 10.3760/cma.j.issn.1005-054X.2003.01.015.
[18]刘国峰. 自体骨-韧带-骨移植治疗慢性舟月不稳定的临床效果[J]. 河北医科大学学报, 2018, 39(3): 289-292. DOI: 10.3969/j.issn.1007-3205.2018.03.010.
[19]唐春晖,姚高文,王林, 等. 切开复位内外固定结合锚钉修复腕骨间韧带治疗月骨周围损伤[J]. 中国骨伤, 2018,31(9):863-866. DOI: 10.3969/j.issn.1003-0034.2018.09.016.
[20]李秀忠, 蔡锦方, 张元信, 等. 舟月骨间韧带在舟月骨屈伸运动中的作用[J]. 中华创伤杂志, 2011, 27(10):919-923. DOI: 10.3760/cma.j.issn.1001-8050.2011.10.017.
[21]朱小弟, 王利, 李文庆, 等. 切开复位加压空心螺钉内固定治疗经舟骨月骨周围骨折-脱位[J]. 中国临床解剖学杂志, 2012, 30(3):353-355.DOI: 10.13418/j.issn.1001-165x.2012.03.029.
[22]刘国峰. 腕关节舟月不稳定临床研究[J]. 中国药业, 2018, 27(A01):241-242.
PDF(7218 KB)

Accesses

Citation

Detail

Sections
Recommended

/