Anisodamine relieves hypoxic-ischemic brain damage and neurologic impairment in young rats

Zhu Yu , Wei Jing , Wu Pengcheng , Yuan Xiao , Zhou Zhenhua, Li Min

Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (5) : 557-562.

PDF(4953 KB)
PDF(4953 KB)
Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (5) : 557-562. DOI: 10.13418/j.issn.1001-165x.2021.05.011

Anisodamine relieves hypoxic-ischemic brain damage and neurologic impairment in young rats

  • Zhu Yu 1, Wei Jing 2, Wu Pengcheng 1, Yuan Xiao 1, Zhou Zhenhua3, Li Min 1
Author information +
History +

Abstract

Objective To investigate the regulatory effect of anisodamine on brain injury and neurological damage in young rats with hypoxic-ischemic brain damage. Methods Fifty young rats were divided into five groups (n=10): a healthy control group, a model group, and three model dosing groups (intravenously injected anisodamine for 2.5, 5, 10 mg/kg). Brain tissue wet and dry weight method was used to detect brain index and brain water content. HE staining was used to observe the pathological damage of brain tissue. TUNEL staining was used to observe the apoptosis of brain tissues around hippocampal neurons. Western blot detects the protein expression levels of Bax/Bcl-2, caspase-9, caspase-3, BDNF and NGF in brain tissue. RT-PCR was used to detect the expression level of BDNF and NGF mRNA, and the kit was used to detect the content of SOD, MDA and GSH-Px. Results Compared with the healthy control group, the brain tissue and nerve function of young rats in the model group were seriously damaged (P<0.05). Compared with the model group, the brain index and brain water content of young rats in the 5 mg/kg and 10 mg/kg anisodamine groups significantly reduced (P<0.05). The pathological damage of the brain tissue significantly improved, and the apoptotic cells around the hippocampal neurons in the brain Apoptosis decreased, Bax/Bcl-2, caspase-9, and caspase-3 expression levels decreased (P<0.05), BDNF and NGF expression levels increased (P<0.05), MDA content decreased, SOD and GSH-Px content increased (P<0.05). Conclusions Anisodamine can alleviate brain damage and nerve function damage in young rats with HIBD.

Key words

  / Anisodamine /  Hypoxic-ischemic brain damage /  Young rats model

Cite this article

Download Citations
Zhu Yu , Wei Jing , Wu Pengcheng , Yuan Xiao , Zhou Zhenhua, Li Min. Anisodamine relieves hypoxic-ischemic brain damage and neurologic impairment in young rats[J]. Chinese Journal of Clinical Anatomy. 2021, 39(5): 557-562 https://doi.org/10.13418/j.issn.1001-165x.2021.05.011

References

[1]   薛磊, 沈冰冰, 王丽娜, 等. 黄芩苷对新生大鼠缺氧缺血性脑损伤保护作用的实验研究[J]. 解放军医药杂志, 2019, 31(10): 6-9. DOI: 10.3969/j.issn.2095-140X.2019.10.002.
[2]  Hamdy N, Eide S, Sun HS, et al. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents[J]. Exp Neurol, 2020, 334: 113457. DOI: 10.1016/j.expneurol.2020.113457.
[3] Bustelo M, Barkhuizen M, van den Hove DLA, et al. Clinical implications of epigenetic dysregulation in perinatal hypoxic-ischemic brain damage[J]. Front Neurol, 2020, 11: 483. DOI: 10.3389/fneur. 2020. 00483.
[4] Go H, Saito Y, Maeda H, et al. Serum cytokine profiling in neonates with hypoxic ischemic encephalopathy[J]. J Neonatal Perinatal Med, 2021, 14(2): 177-182. DOI: 10.3233/NPM-200431.
[5]  Cho KH, Davidson JO, Dean JM, et al. Cooling and immunomodulation for treating hypoxic-ischemic brain injury[J]. Pediatr Int, 2020, 62(7): 770-778. DOI: 10.1111/ped.14215.
[6]  Li Z, Xu CY, Tao YZ, et al. Anisodamine alleviates lipopolysaccharide-induced pancreatic acinar cell injury through NLRP3 inflammasome and NF-κB signaling pathway[J]. J Recept Signal Transduct Res, 2020, 40(1): 58-66. DOI: 10.1080/10799893.2020.1713808.
[7]  Li YF, Xu BY, An R, et al. Protective effect of anisodamine in rats with glycerol-induced acute kidney injury[J]. BMC Nephrol, 2019, 20(1): 223. DOI: 10.1186/s12882-019-1394-y.
[8]  Xu ZW, Wang T, Chen L, et al. Treatment of dilated cardiomyopathy caused by coronary microvascular dysfunction with anisodamine: a report of 5 cases[J]. J Tradit Chin Med, 2020, 40(2): 340-342.  PMID: 32242401.
[9]  Liu C, Shen FM, Le YY, et al. Antishock effect of anisodamine involves a novel pathway for activating alpha7 nicotinic acetylcholine receptor[J]. Crit Care Med, 2009, 37(2): 634-641. DOI: 10.1097/CCM.0b013e31819598f5.
[10]Li XL, Hong M. Aqueous extract of Dendrobium officinale confers neuroprotection against hypoxic-ischemic brain damage in neonatal rats[J]. Kaohsiung J Med Sci, 2020, 36(1): 43-53. DOI: 10.1002/kjm2.12139.
[11]Zhao Q, Cheng X, Wang X, et al. Neuroprotective effect and mechanism of Mu-Xiang-You-Fang on cerebral ischemia-reperfusion injury in rats[J]. J Ethnopharmacol, 2016, 192: 140-147. DOI: 10.1016/j.jep.2016.07.016.
[12]Fang H, Li HF, Yang M, et al. microRNA-128 enhances neuroprotective effects of dexmedetomidine on neonatal mice with hypoxic-ischemic brain damage by targeting WNT1[J]. Biomed Pharmacother, 2019, 113: 108671. DOI: 10.1016/j.biopha.2019.108671.
[13]Hou X, Yuan Z, Wang X, et al. Peptidome analysis of cerebrospinal fluid in neonates with hypoxic-ischemic brain damage[J]. Mol Brain, 2020, 13(1): 133. DOI: 10.1186/s13041-020-00671-9.
[14] 杜逸亭, 高淑强, 李彪, 等. 高压氧联合GM-1治疗对新生儿缺血缺氧性脑病患儿血清Bcl-2、NSE和NF-κB的影响[J]. 解放军医药杂志, 2017, 29(12): 61-63. DOI: 10.3969/j.issn.2095-140X.2017.12.017.
[15] 闫继宏, 王勇. 促红细胞生成素治疗新生儿缺氧缺血性脑病的研究进展[J]. 临床误诊误治, 2017, 30(11): 112-116. DOI: 10.3969/j.issn.1002-3429.2017.11.033.
[16]Dumbuya JS, Chen L, Shu SY, et al. G-CSF attenuates neuroinflammation and neuronal apoptosis via the mTOR/p70SK6 signaling pathway in neonatal Hypoxia-Ischemia rat model[J]. Brain Res, 2020, 1739: 146817. DOI: 10.1016/j. brainres.2020.146817.
[17]邱玲, 范方毅, 邓锐, 等. miR-181a-5p对T淋巴细胞白血病Jurkat细胞增殖和凋亡的影响[J]. 临床误诊误治, 2019, 32(3): 40-45. DOI: 10.3969/j.issn.1002-3429.2019.03.010.
[18]Zhang C, Ni S, Yang ZC, et al. Oxidative stress induces chondrocyte apoptosis through caspase-dependent and caspase-independent mitochondrial pathways and the antioxidant mechanism of angelica sinensis polysaccharide[J]. Oxid Med Cell Longev, 2020: 3240820. DOI: 10.1155/2020/3240820.
[19]Jaldeep L, Lipi B, Prakash P. Potential role of NGF, BDNF and their receptors in oligodendrocytes differentiation from neural stem cell an in vitro study[J]. Cell Biol Int, 2021, 45(2): 432-446. DOI: 10.1002/cbin.11500.
[20]Wang XX, Cong PX, Wang XC, et al. Maternal diet with sea urchin gangliosides promotes neurodevelopment of young offspring via enhancing NGF and BDNF expression[J]. Food Funct, 2020, 11(11): 9912-9923. DOI: 10.1039/d0fo01605e.
[21]Kong ZL, Hsu YT, Johnson A, et al. Protective effects of Antrodia camphorata extract against hypoxic cell injury and ischemic stroke brain damage[J]. Phytother Res, 2021, 35(3): 1609-1620. DOI: 10.1002/ptr.6928.
[22]Hu X, Li SR, Doycheva DM, et al. Rh-CSF1 Attenuates oxidative stress and neuronal apoptosis via the CSF1R/PLCG2/PKA/UCP2 signaling pathway in a rat model of neonatal HIE[J]. Oxid Med Cell Longev, 2020, 2020: 6801587. DOI: 10.1155/2020/6801587.
[23]Le K, Song ZP, Deng J, et al. Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation[J]. Inflamm Res, 2020, 69(12): 1201-1213. DOI: 10.1007/s00011-020-01402-5.
PDF(4953 KB)

Accesses

Citation

Detail

Sections
Recommended

/