Effects of hydrogen sulfide on the autophagy and apoptosis induced by oxygen-glucose deprivation-reoxygenation in rat neuron

Jiang Wenwu, Hong Yue, Wu Lixiang, Deng Lvhong

Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (4) : 426-430.

PDF(3333 KB)
PDF(3333 KB)
Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (4) : 426-430. DOI: 10.13418/j.issn.1001-165x.2021.04.012

Effects of hydrogen sulfide on the autophagy and apoptosis induced by oxygen-glucose deprivation-reoxygenation in rat neuron

  • Jiang Wenwu1,2, Hong Yue3, Wu Lixiang2, Deng Lvhong4
Author information +
History +

Abstract

Objective To investigate the effects of exogenous hydrogen sulfide (H2S) on autophagy and injury induced by oxygen glucose deprivation/reoxygenation (OGD/R) in neurons, and to clarify the molecular mechanism of H2S attenuating cerebral ischemia-reperfusion injury in rats. Methods Rat neuronal PC12 cells were used as the research object. Classical OGD/R was used to induce cell damage. Sodium thiosulfate (NaHS), a donor of H2S, was used to observe the effect of H2S on OGD/R-induced mTOR, AMPK and its phosphorylated AMPK. In order to clarify the role of AMPK in the regulation of autophagy in PC12 cells by H2S, AMPK overexpression plasmid was used to observe the effect of H2S on the damage of PC12 cells. Results The OGD/R-treated PC12 cells had decreased mTOR phosphorylation level and enhanced AMPK activity, and NaHS pretreatment partially reversed the above changes. The overexpression of AMPK can abolish the inhibitory effect of NaHS on OGD/R-induced autophagy and cell damage. Conclusions H2S can inhibit the autophagy of brain neurons during ischemia-reperfusion by inhibiting the activation of AMPK, and finally reduce neuronal damage.

Key words

  / Hydrogen sulfide / Autophagy /  Oxygen-glucose deprivation-reoxygenation /  Sodium hydrosulfide

Cite this article

Download Citations
Jiang Wenwu, Hong Yue, Wu Lixiang, Deng Lvhong. Effects of hydrogen sulfide on the autophagy and apoptosis induced by oxygen-glucose deprivation-reoxygenation in rat neuron[J]. Chinese Journal of Clinical Anatomy. 2021, 39(4): 426-430 https://doi.org/10.13418/j.issn.1001-165x.2021.04.012

References

[1]  庄伟, 陈金波. 脑缺血再灌注损伤[J]. 国际脑血管病杂志, 2019, 27(12): 948-952. DOI: 10.3760/cma.j.issn.1673-4165.2019.12.014.
[2]  Sun JG, Yue FL. Suppression of REDD1 attenuates oxygen glucose deprivation/reoxygenation-evoked ischemic injury in neuron by suppressing mTOR-mediated excessive autophagy[J]. J Cell Biochem, 2019, 120(9): 14771-14779. DOI: 10.1002/jcb.28737.
[3]  焦寒伟, 王红均, 赵宇, 等. 细胞自噬与疾病的研究进展[J]. 安徽农业科学, 2019, 47(2): 10-14. DOI: 10.3969/j.issn.0517-6611.2019.02.004.
[4]  Yuan YQ, Wang YL, Yuan BS, et al. Impaired CBS-H2S signaling axis contributes to MPTP-induced neurodegeneration in a mouse model of Parkinson's disease[J]. Brain Behav Immun, 2018, 67: 77-90. DOI: 10.1016/j.bbi.2017.07.159.
[5]  Guo W, Li D, You Y, et al. Cystathionine gamma-lyase deficiency aggravates obesity-related insulin resistance via FoxO1-dependent hepatic gluconeogenesis[J]. FASEB J, 2019, 33(3): 4212-4224. DOI: 10.1096/fj.201801894R.
[6]  Jiang WW, Huang BS, Han Y, et al. Sodium hydrosulfide attenuates cerebral ischemia/reperfusion injury by suppressing overactivated autophagy in rats[J]. FEBS Open Bio, 2017, 7(11): 1686-1695. DOI: 10.1002/2211-5463.12301.
[7]  Jiang S, Li T, Ji T, et al. AMPK: potential therapeutic target for ischemic stroke[J]. Theranostics, 2018, 8(16): 4535-4551. DOI: 10.7150/thno.25674.
[8] Li MY, Zhu XL, Zhao BX, et al. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis[J]. Cell Death Dis, 2019, 10(7): 489. DOI: 10.1038/s41419-019-1728-5.                                       [9]  Papandreou I, Lim AL, Laderoute K, et al. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L[J]. Cell Death Differ, 2008, 15(10): 1572-1581. DOI: 10.1038/cdd.2008.84.
[10]Qi D, Young LH. AMPK: energy sensor and survival mechanism in the ischemic heart[J]. Trends Endocrinol Metab, 2015, 26(8): 422-429. DOI: 10.1016/j.tem.2015.05.010.
[11]Minter MR, Zhang M, Ates RC, et al. Type-1 interferons contribute to oxygen glucose deprivation induced neuro-inflammation in BE(2)M17 human neuroblastoma cells[J]. J Neuroinflammation, 2014, 11: 43. DOI: 10.1186/1742-2094-11-43.
[12]Li TT, Guo Y, Li J, et al. GSK621 attenuates oxygen glucose deprivation/re-oxygenation-induced myocardial cell injury via AMPK-dependent signaling[J]. Biochem Biophys Res Commun, 2019, 514(3): 826-834. DOI: 10.1016/j.bbrc.2019.04.196.
[13]Zhang R, Lin YQ, Wang WS, et al. Excessive nNOS/NO/AMPK signaling activation mediated by the blockage of the CBS/H2S system contributes to oxygenglucose deprivationinduced endoplasmic reticulum stress in PC12 cells[J]. Int J Mol Med, 2017, 40(2): 549-557. DOI: 10.3892/ijmm.2017.3035.
[14]Zheng YR, Zhang XN, Wu XL, et al. Somatic autophagy of axonal mitochondria in ischemic neurons[J]. J Cell Biol, 2019, 218(6): 1891-1907. DOI: 10.1083/jcb.201804101.
[15]Feng JH, Chen XM, Lu SW, et al. Naringin attenuates cerebral ischemia-reperfusion injury through inhibiting peroxynitrite-mediated mitophagy activation[J]. Mol Neurobiol, 2018, 55(12): 9029-9042. DOI: 10.1007/s12035-018-1027-7.
[16]Feng JH, Chen XM, Guan BH, et al. Inhibition of peroxynitrite-induced mitophagy activation attenuates cerebral ischemia-reperfusion injury[J]. Mol Neurobiol, 2018, 55(8): 6369-6386. DOI: 10.1007/s12035-017-0859-x.
[17]Luo C, Ouyang MW, Fang YY, et al. Dexmedetomidine protects mouse brain from ischemia-reperfusion injury via inhibiting neuronal autophagy through up-regulating HIF-1alpha[J]. Front Cell Neurosci, 2017, 11: 197. DOI: 10.3389/fncel.2017.00197.
[18]雷敏, 吴丽荣, 刘英. 氯沙坦对大鼠脑缺血再灌注损伤的保护作用及分子机制[J]. 中国动脉硬化杂志, 2020, 28(3): 213-218. DOI: 10.3969/j.issn.1007-3949.2020.03.006.
[19]Xie L, Yu SF, Yang K, et al. Hydrogen sulfide inhibits autophagic neuronal cell death by reducing oxidative stress in spinal cord ischemia reperfusion injury[J]. Oxid Med Cell Longev, 2017, 2017: 8640284. DOI: 10.1155/2017/8640284.
PDF(3333 KB)

Accesses

Citation

Detail

Sections
Recommended

/