Effect of miRNA on the TGF-β/smad signal pathway in hepatic fibrosis

Ma Chuhan, Yu Yanan, Lui Qiwen, Che Huasong, Zhao Jiamei, Hu Qiuxia, Cheng Jiamao

Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (3) : 369-372.

PDF(554 KB)
PDF(554 KB)
Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (3) : 369-372. DOI: 10.13418/j.issn.1001-165x.2021.03.024

Effect of miRNA on the TGF-β/smad signal pathway in hepatic fibrosis

  • Ma Chuhan1, Yu Yanan2, Lui Qiwen1, Che Huasong1, Zhao Jiamei1, Hu Qiuxia1, Cheng Jiamao2
Author information +
History +

Cite this article

Download Citations
Ma Chuhan, Yu Yanan, Lui Qiwen, Che Huasong, Zhao Jiamei, Hu Qiuxia, Cheng Jiamao. Effect of miRNA on the TGF-β/smad signal pathway in hepatic fibrosis[J]. Chinese Journal of Clinical Anatomy. 2021, 39(3): 369-372 https://doi.org/10.13418/j.issn.1001-165x.2021.03.024

References

[1] Ge D, Chen H, Zheng S, et al. Hsa-miR-889-3p promotes the proliferation of osteosarcoma through inhibiting myeloid cell nuclear differentiation antigen expression[J]. Biomed Pharmacother, 2019, 114: 108819. DOI: 10.1016/j.biopha.2019.108819.
[2] Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. DOI: 10.1016/j.cbi.2018.07.008.
[3] Xu FY, Liu CW, Zhou DD, et al. TGF-β/SMAD pathways and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64(3): 157-167. DOI: 10.1369/0022155415627681.
[4]  Wang Y, Shen RW, Han B, et al. Notch signaling mediated by TGF-β/Smad pathway in concanavalin A-induced liver fibrosis in rats[J]. World J Gastroenterol, 2017, 23(13): 2330-2336. DOI: 10.3748/wjg.v23.i13.2330.
[5]  Ran LJ, Liang J, Deng X. MicroRNAs regulate hepatic fibrosis via TGF-β/Smad pathway[J]. World Chinese Journal of Digestology, 2017, 25(2): 166. DOI: 10.11569/wcjd.v25.i2.166.
[6]  Du GF, Wang J, Zhang T, et al. Targeting Src family kinase member Fyn by Saracatinib attenuated liver fibrosis in vitro and in vivo[J]. Cell Death Dis,  2020, 11(2): 118. DOI: 10.1038/s41419-020-2229-2.
[7] Genz B, Coleman MA, Irvine KM, et al. Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-β-induced collagen expression in hepatic stellate cells[J]. Sci Rep, 2019, 9(1): 8541. DOI: 10.1038/s41598-019-44865-1.
[8] J Hyun, Y Jung. MicroRNAs in liver fibrosis: focusing on the interaction with hedgehog signaling[J]. World J Gastroenterol, 2016, 22 (29): 6652-6662. DOI: 10.3748/wjg.v22.i29.6652.
[9] Wang L, Wu HL, Wu XF, et al. Mechanism of anti hepatic fibrosis of traditional chinese medicine[J]. Clinical Journal of Traditional Chinese Medicine, 2019, 31(5): 818-821. DOI: 10.16448/j.cjtcm.2019.0240.
[10] 付玲珠, 郑婷, 张永生. TGF-β/Smad信号转导通路与肝纤维化研究进展[J]. 中国临床药理学与治疗学, 2014, 19(10): 1189-1195.
[11] Wang TX, Li Y, Chen J, et al. TGF-β1/Smad3 signaling promotes collagen synthesis in pulmonary artery smooth muscle by down-regulating miR-29b[J]. Int J Clin Exp Pathol, 2018, 11(12): 5592-5601. PMID: 31949646.
[12] 田甜, 马国珍, 廖志峰, 等. TGF-β1、PDGF、CTGF 与肝纤维化发病机制的相关性研究进展[J]. 甘肃医药, 2014, 33(10): 740-742. DOI: 10.15975/j.cnki.gsyy.2014.10.044.
[13] Tu XL, Zhang HY, Zhang JC, et al. MicroRNA-101 suppresses liver fibrosis by targeting the TGF-β signalling pathway[J]. J Pathol, 2014, 234(1): 46-59. DOI: 10.1002/path.4373.
[14] 于洋, 史嘉翊, 黄珍, 等. 肝纤维化中TGF-β/Smad信号通路研究进展[J]. 牡丹江医学院学报, 2019, 40(5): 121-123, 174. DOI: 10.13799/j.cnki.mdjyxyxb.2019.05.038.
[15] Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling[J]. Sci Signal, 2019, 12(570): eaav5183. DOI: 10.1126/scisignal.aav5183.
[16] Kavitha N, Vijayarathna S, Jothy SL, et al. MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancer diagnosis and prognosis[J]. Asian Pac J Cancer Prev, 2014, 15(18): 7489-7497. DOI: 10.7314/apjcp.2014.15.18.7489.
[17] Miyoshi K, Okada TN, Siomi H, et al. Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway[J]. RNA, 2009, 15(7): 1282-1291. DOI: 10.1261/rna.1541209.
[18] Ying SY, Chang DC, Lin SL. The MicroRNA[J]. Methods Mol Biol, 2018, 1733: 1-25. DOI: 10.1007/978-1-4939-7601-0_1.
[19] Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat Rev Genet, 2010, 11(9): 597-610. DOI: 10.1038/nrg2843.
[20] 孙海婷. microRNA作用靶基因的预测[J]. 科技创新与应用, 2013, (23): 57-58. CNKI: SUN:CXYY.0.2013-23-045.
[21] 曾佛来, 施梅姐, 萧焕明, 等. 微小RNAs参与调控肝纤维化转化生长因子β/Smad信号通路的研究进展[J]. 广西医学, 2019, 41(15): 1962-1964, 1968. DOI: 10.11675/j.issn.0253-4304.2019.15.22.
[22] Lakner AM, Steuerwald NM, Walling TL, et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis[J]. Hepatology, 2012, 56(1): 300-310. DOI: 10.1002/hep.25613.
[23] Zhang Y, Huang XR, Wei LH, et al. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling[J]. Mol Ther, 2014, 22(5): 974-985. DOI: 10.1038/mt.2014.25.
[24] Huang CF, Sun CC, Zhao F, et al. miR-33a levels in hepatic and serum after chronic HBV-induced fibrosis[J]. J Gastroenterol, 2015, 50(4): 480-490. DOI: 10.1007/s00535-014-0986-3.
[25] Sun X, He Y, Ma TT, et al. Participation of miR-200a in TGF-β1-mediated hepatic stellate cell activation[J]. Mol Cell Biochem, 2014, 388(1-2): 11-23. DOI: 10.1007/s11010-013-1895-0.
[26] He Y, Huang C, Sun X, et al. MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4[J]. Cell Signal, 2012, 24(10): 1923-1930. DOI: 10.1016/j.cellsig.2012.06.003.
[27] Yu FJ, Guo Y, Chen BC, et al. MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7[J]. Lab Invest, 2015, 95(7): 781-789. DOI: 10.1038/labinvest.2015.58.
[28] Wang CQ, Xu C, Fu XL, et al. Schisandrin B suppresses liver fibrosis in rats by targeting miR-101-5p through the TGF-β signaling pathway[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1): 473-478. DOI: 10.1080/21691401.2020.1717507.
[29] Wang J, Chu ESH, Chen HY, et al. microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway[J]. Oncotarget, 2015, 6(9): 7325-7338. DOI: 10.18632/oncotarget.2621.
[30] Liang CL, Bu SR, Fan XM. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-β1/Smad3[J]. Cell Biochem Func, 2016, 34(5): 326-333. DOI: 10.1002/cbf.3193.
[31] Roy S, Benz F, Cardenas DV, et al. miR-30c and miR-193 are a part of the TGF-β-dependent regulatory network controlling extracellular matrix genes in liver fibrosis[J]. J Dig Dis, 2015, 16(9): 513-524. DOI: 10.1111/1751-2980.12266.
[32] Tu XL, Zheng XX, Li HN, et al. MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor beta signaling in hepatic stellate cells[J]. Toxicol Sci, 2015, 146(1): 157-169. DOI: 10.1093/toxsci/kfv081.
[33]Noetel A, Kwiecinski M, Elfimova N, et al. microRNA are central players in anti- and profibrotic gene regulation during liver fibrosis[J]. Front Physiol, 2012, 3: 49. DOI: 10.3389/fphys.2012.00049.
[34] Tu XL, Zhang YY, Zheng XX, et al. TGF-β-induced hepatocyte lincRNA-p21 contributes to liver fibrosis in mice[J]. Sci Rep, 2017, 7(1): 2957. DOI: 10.1038/s41598-017-03175-0.
[35]Huang Q, Zhang X, Bai F, et al. Methyl helicterte ameliorates liver fibrosis by regulating miR-21-mediated ERK and TGF-β1/Smads pathways[J]. Int Immunopharmacol, 2019, 66: 41-51. DOI: 10.1016/j.intimp.2018.11.006.
[36]Lai SC, Iwakiri Y. Is miR-21 a potent target for liver fibrosis[J]? Hepatology, 2018, 67(6): 2082-2084. DOI: 10.1002/hep.29774.
[37] Zhu DD, He X, Duan YN, et al. Expression of microRNA-454 in TGF-β1-stimulated hepatic stellate cells and in mouse livers infected with Schistosoma japonicum[J]. Parasit Vectors, 2014, 7: 148. DOI: 10.1186/1756-3305-7-148.
[38] Csak T, Bala S, Lippai D, et al. MicroRNA-155 deficiency attenuates liver steatosis and fibrosis without reducing inflammation in a mouse model of steatohepatitis[J]. PLoS One, 2015, 10(6): e0129251. DOI: 10.1371/journal.pone.0129251.
[39] Lu L, Wang JL, Lu HW, et al. MicroRNA-130a and -130b enhance activation of hepatic stellate cells by suppressing PPARγ expression: a rat fibrosis model study[J]. Biochem Biophys Res Commun, 2015, 465(3): 387-393. DOI: 10.1016/j.bbrc.2015.08.012.
[40] Okada H, Honda M, Campbell JS, et al. Inhibition of microRNA-214 ameliorates hepatic fibrosis and tumor incidence in platelet-derived growth factor C transgenic mice[J]. Cancer Sci, 2015, 106(9): 1143-1152. DOI: 10.1111/cas.12730.
[41] Matsuura K, De Giorgi V, Schechterly C, et al. Circulating let-7 levels in plasma and extracellular vesicles correlate with hepatic fibrosis progression in chronic hepatitis C[J]. Hepatology, 2016, 64(3): 732-745. DOI: 10.1002/hep.28660.
[42] Hu JF, Chen C, Liu QD, et al. The role of the miR-31/FIH1 pathway in TGF-β-induced liver fibrosis[J]. Clin Sci (Lond), 2015, 129(4): 305-317. DOI: 10.1042/CS20140012.
[43] Roderburg C, Luedde M, Vargas Cardenas D, et al. miR-133a mediates TGF-β-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis[J]. J Hepatol, 2013, 58(4): 736-742. DOI: 10.1016/j.jhep.2012.11.022.
[44] Yang YZ, Zhao XJ, Xu HJ, et al. Magnesium isoglycyrrhizinate ameliorates high fructose-induced liver fibrosis in rat by increasing miR-375-3p to suppress JAK2/STAT3 pathway and TGF-β1/Smad signaling[J]. Acta Pharmacol Sin, 2019, 40(7): 879-894. DOI: 10.1038/s41401-018-0194-4.
PDF(554 KB)

Accesses

Citation

Detail

Sections
Recommended

/