Research on the biocompatibility and biomechanics of citrate-based biodegradable screws 

Yang Cheng , Li Zhen, Liao Jianwen, Fan Shicai, Yang Jian, Bai Xiaochun

Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (2) : 182-186.

PDF(3701 KB)
PDF(3701 KB)
Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (2) : 182-186. DOI: 10.13418/j.issn.1001-165x.2021.02.012

Research on the biocompatibility and biomechanics of citrate-based biodegradable screws 

  • Yang Cheng1 , Li Zhen2,  Liao Jianwen1, Fan Shicai1, Yang Jian3, Bai Xiaochun4
Author information +
History +

Abstract

weighing, 8-11 kg) were selected to prepare the models (AO classification type: B1) of bilateral lateral femoral condyle fracture. Right fracture was fixed with POC-click-HA absorbable cannulated screws as an experimental group and left fracture with Poly-DL-Lactic acid(PDLLA) screws as a control group. At 4, 8, and 12 weeks after operation, general observation was done, Lane - Sandhu histologic grading, biomechanics were taken for observing fracture healing. Results All aniamls survived to the end of the experiment. General observations showed that no fracture displacement occurred and fracture healed at 12 weeks in the two groups. POC - click - HA screws degraded and new bone tissue was found from samples at 12 weeks. According to the Lane - Sandhu histologic grading, , there was no statistical difference between two groups in the screws at 4, 8, and 12 weeks after operation (P>0.05). Biomechanics test showed that the maximum load at the nail-bone interface of the POC-click-HA group was lower than that of the PDLLA group at 4 weeks after operation (P<0.05). While there was no significant difference between the two groups at 8 weeks and 12 weeks (P>0.05).  Conclusions Citric acid polymer composite hydroxyapatite (POC-click-HA) screw has good biocompatibility and biomechanics,which can be better utilized for Beagles’ lateral femoral condyle B1 fractures. 

Key words

 Biodegradable bone screws; Lateral femoral epicondyle fracture; Citric acid;  / Biocompatibility; Biomechanics

Cite this article

Download Citations
Yang Cheng , Li Zhen, Liao Jianwen, Fan Shicai, Yang Jian, Bai Xiaochun. Research on the biocompatibility and biomechanics of citrate-based biodegradable screws [J]. Chinese Journal of Clinical Anatomy. 2021, 39(2): 182-186 https://doi.org/10.13418/j.issn.1001-165x.2021.02.012

References

[1]  Hofmann GO. Biodegradable implants in traumatology: a review on the state-of-the-art[J]. Arch Orthop Trauma Surg, 1995, 114(3): 123-132. DOI: 10.1007/BF00443385.
[2] Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices[J]. Biomaterials, 2000, 21(23): 2335-2346. DOI: 10.1016/s0142-9612(00)00101-0.
[3]  Ellenrieder M, Steinhauser E, Bader R, et al. How stiffness and distal interlocking of revision hip stems influence the femoral cortical strain pattern[J]. J Orthop Sci, 2012, 17(3): 205-212. DOI: 10.1007/s00776-012-0201-4.
[4] Lee WT, Koak JY, Lim YJ, et al. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants[J]. J Biomed Mater Res B Appl Biomater, 2012, 100(4): 1044-1052. DOI: 10.1002/jbm.b.32669.
[5]  Althuizen MNR, Hoff MLV, Berg-v Erp SHMvd, et al. Early failures in large head metal-on-metal total hip arthroplasty[J]. Hip Int, 2012, 22(6): 641-647. DOI: 10.5301/HIP.2012.10340.
[6]  Zhang SX, Zhang XN, Zhao CL, et al. Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomater, 2010, 6(2): 626-640. DOI: 10.1016/j.actbio.2009.06.028.
[7]  Burdick JA, Frankel D, Dernell WS, et al. An initial investigation of photocurable three-dimensional lactic acid based scaffolds in a critical-sized cranial defect[J]. Biomaterials, 2003, 24(9): 1613-1620. DOI: 10.1016/s0142-9612(02)00538-0.
[8] Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers[J]. Biotechnol Annu Rev, 2006, 12: 301-347. DOI: 10.1016/S1387-2656(06)12009-8. 
[9]  Dickens F. The citric acid content of animal tissues, with reference to its occurrence in bone and tumour[J]. Biochem J, 1941, 35(8-9): 1011-1023. DOI: 10.1042/bj0351011.
[10]Hartles RL. Citrate in mineralized tissues[J]. Adv Oral Biol, 1964, 1: 225-253. DOI: 10.1016/b978-1-4832-3117-4.50014-0.
[11]Hu YY, Rawal A, Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone[J]. Proc Natl Acad Sci U S A, 2010, 107(52): 22425-22429. DOI: 10.1073/pnas.1009219107.
[12]Davies E, Müller KH, Wong WC, et al. Citrate bridges between mineral platelets in bone[J]. Proc Natl Acad Sci U S A, 2014, 111(14): E1354-E1363. DOI: 10.1073/pnas.1315080111.
[13]Costello LC, Chellaiah M, Zou J, et al. The status of citrate in the hydroxyapatite/collagen complex of bone; and Its role in bone formation[J]. J Regen Med Tissue Eng, 2014, 3: 4. DOI: 10.7243/2050-1218-3-4.
[14]Xie D, Guo J, Mehdizadeh M, et al. Development of Injectable Citrate-Based Bioadhesive Bone Implants[J]. J Mater Chem B, 2015, 3: 387-398. DOI: 10.1039/C4TB01498G.
[15]Sun D, Chen YH, Tran RT, et al. Citric acid-based hydroxyapatite composite scaffolds enhance calvarial regeneration[J]. Sci Rep, 2014, 4: 6912. DOI: 10.1038/srep06912.
[16]Guo Y, Tran RT, Xie DH, et al. Citrate-based biphasic scaffolds for the repair of large segmental bone defects[J]. J Biomed Mater Res A, 2015, 103(2): 772-781. DOI: 10.1002/jbm.a.35228.
[17]Guo JS, Xie ZW, Tran RT, et al. Click chemistry plays a dual role in biodegradable polymer design[J]. Adv Mater, 2014, 26(12): 1906-1911. DOI: 10.1002/adma.201305162.
[18] Tran RT, Wang L, Zhang C, et al. Synthesis and characterization of biomimetic citrate-based biodegradable composites[J]. J Biomed Mater Res A, 2014, 102(8): 2521-2532. DOI: 10.1002/jbm.a.34928.
[19]谭新宇. 异种生物骨钉的实验研究[D]. 广州: 广州医科大学, 2010. DOI: 10.7666/d.d124434.
[20]康展荣, 黄秋英, 黄建明, 等. 生物可吸收螺钉在下胫腓联合损伤中的应用进展[J]. 中华创伤骨科杂志, 2018, 20(7): 639-644. DOI: 10.3760/cma.j.issn.1671-7600.2018.07.017.
[21] 王毅, 徐永清, 陈东源, 等. 可吸收手舟骨螺钉的研制和生物力学研究[J]. 中国临床解剖学杂志, 2009, 27(3): 329-332. DOI: CNKI:SUN:ZLJZ.0.2009-03-029.
[22] 秦金桥, 黄潮桐, 陈隆福, 等. 多指再植可吸收髓内钉与克氏针内固定效果比较研究[J]. 中国临床解剖学杂志, 2009, 27(1): 100-102, 105. DOI: CNKI:SUN:ZLJZ.0.2009-01-038.
[23]温晓东, 鹿军, 赵宏谋, 等. 金属与可吸收螺钉固定下胫腓联合损伤比较[J]. 中国矫形外科杂志, 2020, 28(8): 676-681. DOI: CNKI:SUN:ZJXS.0.2020-08-003.
[24]薛清佩, 邹云涛, 潘进贤, 等. 可吸收螺钉治疗不同类型的内踝骨折[J]. 中华关节外科杂志(电子版), 2020, 14(1): 124-127. DOI: 10.3877/cma.j.issn.1674-134X.2020.01.023.
PDF(3701 KB)

Accesses

Citation

Detail

Sections
Recommended

/