The lipid droplet distribution and expression of heart type fatty acid binding protein in the myocardium of hyperlipidemic rat heart

Sun Xiaopeng, Guo Kang, Guo Zhikun

Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (1) : 49-54.

Chinese Journal of Clinical Anatomy ›› 2021, Vol. 39 ›› Issue (1) : 49-54. DOI: 10.13418/j.issn.1001-165x.2021.01.010

The lipid droplet distribution and expression of heart type fatty acid binding protein in the myocardium of hyperlipidemic rat heart

  • Sun Xiaopeng1, 2,Guo Kang3,  Guo Zhikun
Author information +
History +

Abstract

Objective To observe the changes of lipid droplet in cardiomyocytes and cardiac function of hyperlipidemia rats, and the expression changes of heart type fatty acid binding protein (H-FABP). Methods High fat diet SD male rats was established hyperlipidemia rat model. After feeding for 4 weeks, 8 weeks and 12 weeks, the cardiac function of the rats was detected and the heart was removed. Frozen sections were stained with oil red O, and the distribution of lipid droplets in the myocardium was observed under light microscope. The changes of lipid droplets in myocardium were observed by transmission electron microscope. The expression of H-FABP in cardiomyocytes and myocardium was detected by immunohistochemistry, immunofluorescence and Western blotting. Results Compared with the normal diet rats, the serum triglyceride and total cholesterol increased significantly in the high-fat diet rats, the most obvious was in the 12 week, accompanied by a significant reduction in ejection fraction, increasing of lipid droplets in myocardial cells. The number of H-FABP in myocardium and myocardium increased significantly at the 8th week and the 12th week. Conclusions The myocardium of hyperlipidemia rats occurs fatty degeneration. With the increasing concentration of blood lipid, the fatty degeneration and the heart function decrease, which may be related to the increasing of H-FABP expression and the increasing of fatty acid oxidation in cardiac myocytes.

Key words

H-FABP /  Hyperlipidemia /  Myocardium fatty degeneration /  Immunohistochemistry /   / Immunofluorescence /  Western blotting /  Rat heart function

Cite this article

Download Citations
Sun Xiaopeng, Guo Kang, Guo Zhikun. The lipid droplet distribution and expression of heart type fatty acid binding protein in the myocardium of hyperlipidemic rat heart[J]. Chinese Journal of Clinical Anatomy. 2021, 39(1): 49-54 https://doi.org/10.13418/j.issn.1001-165x.2021.01.010

References

[1] Lopaschuk GD, Ussher JR, Folmes CDL. et al. Myocardial fatty acid metabolism in health and disease[J]. Physiol Rev, 2010, 90(1): 207-258. DOI: 10.1152/physrev.00015.2009.
[2] Pyati AK, Devaranavadagi BB, Sajjannar SL, et al. Heart-type fatty Acid-binding protein, in early detection of acute myocardial infarction: comparison with CK-MB, troponin I and myoglobin[J]. Indian J Clin Biochem, 2016, 31(4): 439-445. DOI: 10.1007/s12291-015-0544-7.
[3] Haunerland NH. Fatty acid binding proteins in locust and mammalian muscle. Comparison of structure, function, and regulation[J]. Comp Biochem Physiol B Biochem Mol Biol, 1994, 109(2-3): 199-208. DOI: 10.1016/0305-0491(94)90003-5.
[4] van der Lee KA, Vork MM, De Vries JE, et al. Long-chain fatty acidinduced changes in gene expression in neonatal cardiac myocytes[J]. J Lipid Res, 2000, 41(1):41-47. DOI:10.1161/01.RES.0000060700. 55247.7C.
[5]  Luiken JJFP, Glatz JFC, Neumann D, et al. Cardiac contraction-induced GLUT4 translocation requires dual signaling input[J]. Trends Endocrinol Metab, 2015, 26(8): 404-410. DOI: 10.1016/j.tem.2015.06.002.
[6] Glatz JFC, Nabben M, Heather LC, et al. Regulation of the subcellular trafficking of CD36, a major determinant of cardiac fatty acid utilization[J]. Biochim Biophysiol Acta, 2016, 1861(10): 1461-1471. DOI: 10.1016/j.bbalip.2016.04.008.
[7]  Klip A, Sun Y, Chiu TT, et al. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation[J]. Am J Physiol Cell Physiol, 2014, 306(10): C879-C886. DOI: 10.1152/ajpcell.00069. 2014.
[8] van der Vusse GJ, van Bilsen M, Glatz JF, et al. Cardiac fatty acid uptake and transport in health and disease[J]. Cardiovasc Res, 2000, 45(2): 279-293. DOI: 10.1016/s0008-6363(99)00263-1.
[9]  武杰, 王超, 郑鹏飞, 等. plin5促进心肌脂肪储积减轻心脏脂毒性损伤[J]. 心脏杂志, 2015, 27(5): 514-519. DOI:10.13191/j.chj.2015.0145
[10] Storch J, Thumser AE. Tissue-specific functions in the fatty acid-binding protein family[J]. J Biol Chem, 2010, 285(43): 32679-32683. DOI: 10.1074/jbc.R110.135210.
[11]Heuckeroth RO, Birkenmeir EH, Levin MS, et al. Analysis of the tissue specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein[J]. J Biol Chem, 1987, 262(20): 9709-9717. DOI: 10.1385/JMN:16:2-3:133.
[12]Burton PB, Hogben CE, Joannou CL, et al. Heart fatty acid binding protein is a novel regulator of cardiac myocyte hypertrophy[J]. Biochem Biophys Res Commun, 1994, 205(3): 1822-1828. DOI: 10.1006/bbrc.1994.2882.
[13] Viswanathan K, Hall AS, Barth JH, et al. An evidence-based approach to the assessment of heart-type fatty acid binding protein in acute coronary syndrome[J]. Clin Biochem Rev, 2012, 33(1): 3-11. DOI: 10.1258/acb.2009.009055.
[14]Neil HA, Mant D, Jones L, et al. Lipid screening: Is it enough to measure total cholesterol concentration[J]. BMJ, 1990, 301(6752): 584-587. DOI: 10.1136/bmj.301.6752.584.
[15]Jackson R, Beaglehole R. Evidence-based management of dyslipidaemia[J]. Lancet, 1995, 346(8988): 1440-1442. DOI: 10.1016/s0140-6736(95)92466-3.
[16]温秀梅, 陈芝芸, 严茂祥, 等. 大鼠非酒精性脂肪性肝炎形成中脂质代谢的变化[J]. 中华中医药学刊, 2008, 26(9): 1987-1989.DOI:10.13193/j.archtcm.2008.09.148.wenxm.087
[17] Kimmel AR, Sztalryd C. Perilipin 5, a lipid droplet protein adapted to mitochondrial energy utilization[J]. Curr Opin Lipidol, 2014, 25(2): 110-117. DOI: 10.1097/MOL.0000000000000057.

Accesses

Citation

Detail

Sections
Recommended

/