Actin polymerization affects osteogenic differentiation of human fibroblast by regulating mitochondrial dynamics

JIANG Xin, FAN Ting-yu, SUN Bing, DAI Jing-xing, OUYANG Jun, ZHONG Shi-zhen

Chinese Journal of Clinical Anatomy ›› 2020, Vol. 38 ›› Issue (3) : 263-269.

Chinese Journal of Clinical Anatomy ›› 2020, Vol. 38 ›› Issue (3) : 263-269. DOI: 10.13418/j.issn.1001-165x.2020.03.006

Actin polymerization affects osteogenic differentiation of human fibroblast by regulating mitochondrial dynamics

  • JIANG Xin, FAN Ting-yu, SUN Bing, DAI Jing-xing, OUYANG Jun, ZHONG Shi-zhen
Author information +
History +

Abstract

Objective To explore the affects of actin on osteogenic differentiation of human fibroblast by regulating mitochondrial dynamics. Methods  Cytochalasin D (Cyto D) and Jasplakinolide (JAS) were added to be the growth medium and osteogenic differentiation medium respectively, then the changes of cell characters and mitochondrial dynamics were detected by Immunofluorescence staining and western blot experiments in the treatment of 1 d, 4 d and 7 d. Results Cyto D reduced the effect of osteogenic induction media, but JAS increased the effect of it. JAS enhanced significantly the effect of mitochondrial dynamics in fibroblast than Cyto D. Conclusions Actin polymerization motivates the osteogenic differentiation; Actin polymerization and depolymerization affects the colocalization ratio between mitochondrial and actin in osteogenic differentiated cells. The results can provide important biological information for studying the mitochondrial and differentiation mechanism.

Cite this article

Download Citations
JIANG Xin, FAN Ting-yu, SUN Bing, DAI Jing-xing, OUYANG Jun, ZHONG Shi-zhen. Actin polymerization affects osteogenic differentiation of human fibroblast by regulating mitochondrial dynamics[J]. Chinese Journal of Clinical Anatomy. 2020, 38(3): 263-269 https://doi.org/10.13418/j.issn.1001-165x.2020.03.006

References

[1] Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis[J]. Genes Dev, 2008, 22(12): 1577-1590.
[2] Yang C, Svitkina TM. Ultrastructure and dynamics of the actin-myosin II cytoskeleton during mitochondrial fission[J]. Nat Cell Biol, 2019, 21(5): 603-613.
[3] Li M, Zhang C, Yang Y. Effects of mechanical forces on osteogenesis and osteoclastogenesis in human periodontal ligament fibroblasts: a systematic review of in vitro studies[J]. Bone Joint Res, 2019, 8(1): 19-31.
[4] Koerdt S, Siebers J, Bloch W, et al. Role of oxidative and nitrosative stress in autogenous bone grafts to the mandible using guided bone regeneration and a deproteinized bovine bone material[J]. J CranioMaxillofac Surg, 2014, 42(5): 560-567.
[5] Hadjiargyrou M, O'Keefe RJ. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease[J]. J Bone Miner Res, 2014, 29(11): 2307-2322.
[6]  Li S, Xu S, Roelofs BA, et al. Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission[J]. J Cell Biol, 2015, 208(1): 109-123.
[7]  黄健, 姜小凡, 叶莉斯, 等. 线粒体动力学研究进展[J]. 吉林医药学院学报, 2018, 39(5): 371-373.
[8] Shares BH, Busch M, White N, et al. Active mitochondria support osteogenic differentiation by stimulating beta-catenin acetylation[J]. J Biol Chem, 2018, 293(41): 16019-16027.
[9] Seo JH, Agarwal E, Bryant KG, et al. Syntaphilin ubiquitination regulates mitochondrial dynamics and tumor cell movements[J]. Cancer Res, 2018, 78(15): 4215-4228.
[10] 樊庭宇, 曲戎梅, 冯雁婷, 等. 不同浓度细胞松弛素D对人脂肪源干细胞分化能力的影响[J]. 中国临床解剖学杂志, 2018, 36(1): 45-50.
[11] 邵开峰, 吴泽志, 王伯初, 等. 细胞骨架对肝癌细胞粘附性的影响[J]. 重庆大学学报(自然科学版), 2000, 23(3): 9-11.
[12]Han Y, Kim SJ. Simvastatin-dependent actin cytoskeleton rearrangement regulates differentiation  via the extracellular signal-regulated kinase-1/2 and p38 kinase pathways in rabbit articular chondrocytes[J]. Eur J Pharmacol, 2018, 834: 197-205.
[13]Steffen J, Koehler CM. ER-mitochondria contacts: actin dynamics at the ER control mitochondrial fission via calcium release[J]. J Cell Biol, 2018, 217(1): 15-17.
[14]Wu F, Ye H, Lin J, et al. TGF-beta3 reduces apoptosis in ischemia-induced adipose-derived stem cells by enhancing DNA repair[J]. Exp Ther Med, 2018, 15(5): 4400-4408.

Accesses

Citation

Detail

Sections
Recommended

/