Application research of artificial intelligence in medical image diagnosis

LI Ding, WANG Yan-fang, LI Yong-xin, HUANG Wen-hua

Chinese Journal of Clinical Anatomy ›› 2020, Vol. 38 ›› Issue (1) : 110-113.

Chinese Journal of Clinical Anatomy ›› 2020, Vol. 38 ›› Issue (1) : 110-113. DOI: 10.13418/j.issn.1001-165x.2020.01.023

Application research of artificial intelligence in medical image diagnosis

  • LI Ding1, 2, WANG Yan-fang1, 2, LI Yong-xin1, 2, HUANG Wen-hua1, 2
Author information +
History +

Cite this article

Download Citations
LI Ding, WANG Yan-fang, LI Yong-xin, HUANG Wen-hua. Application research of artificial intelligence in medical image diagnosis[J]. Chinese Journal of Clinical Anatomy. 2020, 38(1): 110-113 https://doi.org/10.13418/j.issn.1001-165x.2020.01.023

References

[1] Chen JH, Asch SM. Machine learning and prediction in medicine-beyond the peak of inflated expectations[J]. N Engl J Med, 2017, 376(26): 2507-2509.
[2]  涂仕奎, 杨杰, 连勇, 等. 关于智能医疗研究与发展的思考[J]. 科学, 2017, 3(69): 9-11.
[3]  李金昌. 人工智能与统计学[J]. 中国统计, 2018(10): 16-18.
[4]  刘泉宝, 刘永清. 从思维科学看人工智能的研究[J]. 计算机科学, 1994, 20(5): 9-12.
[5]  Koch M. Artificial intelligence is becoming natural[J]. Cell, 2018, 173(3): 531-533.
[6]  张逊. 现代医学事业发展的新理念-充分利用互联网、大数据、人工智能[J]. 中国肺癌杂志, 2018, 21(3): 141-142.
[7] Zaharchuk G, Gong E, Wintermark M, et al. Deep learning in neuroradiology[J]. AJNR Am J Neuroradiol, 2018, 39(10): 1776-1784.
[8]  李华秀, 李振辉, 王关顺. 影像组学在消化道系统的应用进展[J]. 中国临床医学影像杂志, 2017, 28(9): 672-674.
[9]  Kumari D, Kumar R. Impact of biological big data in bioinformatics[J]. International Journal of Computer Applications, 2014, 101(11): 22-24.
[10]Gil Y, Greaves M, Hendler J, et al. Artificial intelligence. Amplify scientific discovery with artificial intelligence[J]. Science, 2014, 346 (6206): 171-172.
[11]Rampasek L, Goldenberg A. Learning from everyday images enables expert-like diagnosis of retinal diseases[J]. Cell, 2018, 172(5): 893-895.
[12]Kahn CE Jr. From images to actions: opportunities for artificial intelligence in radiology[J]. Radiology, 2017, 285(3): 719-720.
[13]Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131.
[14]Acharya UR, Hagiwara Y, Sudarshan VK, et al. Towards precision medicine: from quantitative imaging to radiomics[J]. J Zhejiang Univ Sci B, 2018, 19(1): 6-24.
[15]Komeda Y, Handa H, Watanabe T, et al. Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: preliminary experience[J]. Oncology, 2017, 93(suppl 1): 30-34.
[16]Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[17] 陈诗慧, 刘维湘, 秦璟, 等. 基于深度学习和医学图像的癌症计算机辅助诊断研究进展[J]. 生物医学工程学杂志, 2017, 34(2): 314-319.
[18] Varuna Shree N, Kumar TNR. Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network[J]. Brain Inform, 2018, 5(1): 23-30.
[19]Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542 (7660): 686.
[20] Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists[J]. Ann Oncol, 2018, 29(8): 1836-1842.
[21] Marchetti MA, Codella NCF, Dusza SW, et al. Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images[J]. J Am Acad Dermatol, 2018, 78(2): 270-277.
[22]Javaid M, Javid M, Rehman MZ, et al. A novel approach to CAD system for the detection of lung nodules in CT images[J]. Comput Methods Programs Biomed, 2016, 135(1): 125-139.
[23]Masood A, Sheng B, Li P, et al. Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images[J]. J Biomed Inform, 2018, 79(1): 117-128.
[24]DeSantis C, Ma J, Bryan L, et al. Breast cancer statistics, 2013[J]. CA Cancer J Clin, 2014, 64(1): 52-62.
[25] Low SK, Zembutsu H, Nakamura Y. Breast cancer: the translation of big genomic data to cancer precision medicine[J]. Cancer Science, 2018, 109(3): 497-506.
[26] Zadeh Shirazi A, Seyyed Mahdavi Chabok SJ, Mohammadi Z. A novel and reliable computational intelligence system for breast cancer detection[J]. Med Biol Eng Comput, 2018, 56(5): 721-732.
[27] Ortiz-Rodriguez JM, Guerrero-Mendez C, Martinez-Blanco MDR, et al. Breast cancer detection by means of artificial neural networks[J]. Advanced Applications for Artificial Neural Networks. 2018, (1): 161-176.
[28] Gopal NN, Karnan M. Diagnose brain tumor through MRI using image processing clustering algorithms such as Fuzzy C Means along with intelligent optimization techniques[C]. IEEE, 2010.
[29] El-Dahshan ESA, Mohsen HM, Revett K, et al. Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm[J]. Expert Systems with Applications, 2014, 41(11): 5526-5545.
[30] Manogaran G, Varatharajan R, Priyan MK. Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system[J]. Multimedia Tools and Applications, 2018, 77(4): 4379-4399.
[31] Nazari S, Fallah M, Kazemipoor H, et al. A fuzzy inference-fuzzy analytic hierarchy process-based clinical decision support system for diagnosis of heart diseases[J]. Expert Systems with Applications, 2017, 95(1): 261-271.
[32] Wang LZ, Cheung CY, Tapp RJ, et al. Availability and variability in guidelines on diabetic retinopathy screening in Asian countries[J]. Br J Ophthalmol, 2017, 101(10): 1352-1360.
[33] Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223.
[34] Rajalakshmi R, Subashini R, Anjana RM, et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence[J]. Eye, 2018, 32(6): 1138-1144.
[35] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.

Accesses

Citation

Detail

Sections
Recommended

/