Objective To verify the reliability of the sophisticated eardrum-ossicular chain model and provide theoretical basis and reference for the follow-up experiments by using finite element method to analyze the harmonic response. Methods A sophisticated eardrum-ossicular chain model by multi-software synthesized was established, by using Micro-CT and finite element method to obtain the fault data (screw pitch:0.24mm, total cross sectional image: 464 slices). The fault data were compared with the data which obtained from the temporal bone specimen scanned by laser doppler. Results The amplitudes of the tympanic membrane data collection points were 0.022, 0.031 and 0.0041 microns at frequency of 100Hz, 800Hz, 8000Hz respectively, and the amplitudes of the stapes plate data collection points were 0.011, 0.015 and 0.000069 microns respectively. The result of the models’ harmonic response was consistent with the result of laser doppler. Conclusions We can rebuild effectively a sophisticated eardrum-ossicular chain by establishing the model, we can use this model to analyze physiological function and pathologic change of the ossicular chain.
Key words
Eardrum-ossicular chain model /
FEM /
Biomechanics /
Harmonic response analysis /
Digital reconstruction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 黄华, 王杰. 锤骨上韧带与锤骨前韧带固定对中耳传声的影响--有限元模型研究[J]. 临床耳鼻咽喉头颈外科杂志, 2016, 30(24): 1935-1939.
[2] 王杰, Zhao Fei, 李永新. 颞肌筋膜重建鼓膜厚度对中耳传声的影响-有限元模型研究[J].中国耳鼻咽喉头颈外科, 2015, 22(8):414-418.
[3] Gan RZ, Dai C, Wang X, et al. A totally implantable hearing system-design and function characterization in 3D computational model and temporal bones[J]. Hear Res, 2010, 263(2):138-144.
[4] Zhao F, Koike T, Wang J, et al. Finite element analysis of the middle ear transfer functions and related pathologies[J]. Med Eng Phys, 2009, 31(8):907-916.
[5] Wang J, Zhao F, Li Y, et al. Effect of anterior tympanomeatal angle blunting on the middle ear transfer function using a finite element ear model[J]. Med Eng Phys, 2011, 33(9):1136-1146.
[6] Kelly DJ, Prendergast PJ, Blayney AW. The effect of prosthesis design on vibration of the reconstructed ossicular chain:a comparative finite element analysis of four prostheses[J].Otol Neurotol, 2003, 24(1):11-19.
[7] 张官萍, 巫爱霞,戴朴,等. 中耳三维有限元模型的建立与中耳实体模型质量属性分析[J]. 中华耳鼻咽喉头颈外科杂志, 2007, 42(5):357-361.
[8] Gan RZ, Wang X. Multifield coupled finite element analysis for sound transmission in otitis media with effusion[J]. J Acoust Soc Am, 2007, 122(6):3527-3538.
[9] Gan RZ, Wood MW, Dormer KJ. Human middle ear transfer function measured by double laser interferometry system[J]. Otol Neurotol, 2004, 25(4): 423-35.
[10]Gan RZ, Feng B, Sun Q. Three-dimensional finite element modeling of human ear for sound transmission[J]. Ann Biomed Eng, 2004, 32(6):847-859.
[11] 顾于燕, 任冬冬, 韩朝. 中国成人正常实体镫骨精确测量及临床意义[J]. 中国眼耳鼻喉科杂志, 2017, 17(1):16-18.
[12]田钟瑞, 王沛英. 听小骨测量和听骨链重建术[J]. 中华耳鼻咽喉科杂志, 1979, 14(1):1-6.
[13]Motallebzadeh H, Maftoon N, Pitaro J, et al. Finite-element modelling of the acoustic input admittance of the newborn ear canal and middle ear[J]. J Assoc Res Otolaryngol, 2017, 18(1):25-48.
[14]Leckness K, Nakmali D,Gan RZ.Computational modeling of blast wave transmission through human ear[J]. Mil Med, 2018, 183(suppl 1):262-268.