Antioxidant and neuroprotective effects of Codonopsis pilosula polysaccharides on hypoxic-ischemic brain injury induced by Nrf2 pathway

MA Jing, HE Wen-long, GAO Chong-yang, YU Rui-yun, XUE Peng, NIU Yong-chao

Chinese Journal of Clinical Anatomy ›› 2019, Vol. 37 ›› Issue (4) : 403-408.

Chinese Journal of Clinical Anatomy ›› 2019, Vol. 37 ›› Issue (4) : 403-408. DOI: 10.13418/j.issn.1001-165x.2019.04.009

Antioxidant and neuroprotective effects of Codonopsis pilosula polysaccharides on hypoxic-ischemic brain injury induced by Nrf2 pathway

  • MA Jing1, HE Wen-long1, GAO Chong-yang1, YU Rui-yun1, XUE Peng1, NIU Yong-chao2
Author information +
History +

Abstract

Objective To study the antioxidant and neuroprotective effects of Codonopsis pilosula polysaccharides (CPP) and its possible mechanism. Methods Rice method was used to establish HIBI rat model. Normal saline was given to the sham group and the HIBI group, and corresponding doses of CPP solution were given to the drug groups. The neurological function, cerebral water content of rats, histopathologic changes, apoptosis in the rat hippocampus, the level of lipid peroxide, the expression of antioxidant and neuroprotective proteins were evaluated. Results Compared with the model group, the neurological function, cerebral water content and the pathological injury of brain tissue were significantly reduced (P<0.01). The apoptosis rate, expression of Bax, content of LDH and MDA also decreased significantly (P<0.01). Expression of Bcl-2 and activity of SOD were up-regulated (P<0.01). In addition, the expressions of bFGF, BDNF, PSD95, SYP, Nrf2 and HO-1  were significantly up-regulated (P<0.01).  Conclusion CPP has antioxidant and neuroprotective effects on hypoxic-ischemic brain injury, and its function may be related to mediating Nrf2 signal pathway.

Key words

Hypoxic ischemic brain injury /  Codonopsis pilosula polysaccharides /  Nuclear transcription related factor 2 /  Oxidoreductase 1

Cite this article

Download Citations
MA Jing, HE Wen-long, GAO Chong-yang, YU Rui-yun, XUE Peng, NIU Yong-chao. Antioxidant and neuroprotective effects of Codonopsis pilosula polysaccharides on hypoxic-ischemic brain injury induced by Nrf2 pathway[J]. Chinese Journal of Clinical Anatomy. 2019, 37(4): 403-408 https://doi.org/10.13418/j.issn.1001-165x.2019.04.009

References

[1]  Liu B, Tang J, Zhang J, et al. Autophagy activation aggravates neuronal injury in the hippocampus of vasculardementia rats[J]. Neural Regen Res, 2014, 9(13):1288-1296. 
[2] O'Brien JT, Thomas A. Vascular dementia[J]. Lancet, 2015, 386(10004): 1698-1706.
[3]  Zhang Y, Tie X, Bao B, et al. Metabolism of flavones C-glucosides and p-coumaric acid from antioxidant of bamboo leaves(AOB) in rats[J]. Br J Nutr, 2007, 97(3): 484-494.
[4] Yue T, Shao D, Yuan Y, et al. Ultrasound-assisted extraction, HPLC analysis, and antioxidant activity of polyphenols from unripe apple[J]. J Sep Sci, 2012, 35(16): 2138-2145. 
[5] Xie JH, Shen MY, Xie MY, et al. Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharides[J]. Carbohydr Polym, 2012, 89(1): 177-184. 
[6] Liu JH, Li L, Shang XD, et al. Anti-Helicobacter pylori activity of bioactive components isolated from Hericiumerinaceus[J]. J Ethnopharmacol, 2016, 183(1): 54-58. 
[7] Rajagopalu D, Show PL, Tan YS, et al. Recovery of laccase from processed Hericium erinaceus(Bull.:Fr)Pers. Fruitingbodies in aqueous two-phase system[J]. J Biosci Bioeng, 2016, 122(3): 301-306. 
[8] Zhang P, Hu L, Bai R, et al. Structural characterization of a pectic polysaccharide from Codonopsis pilosulaand its immunomodulatory activities in vivo and in vitro[J]. Int J Biol Macromol, 2017, 104(Pt A): 1359-1369. 
[9] Liu C, Chen J, Li E, et al. Solomonseal polysaccharide and sulfated Codonopsis pilosula polysaccharidesynergistically resist Newcastle disease virus[J]. PLoS One, 2015, 10(2): e0117916. 
[10]Liu C, Chen J, Li E, et al. The comparison of antioxidative and hepatoprotective activities of Codonopsispilosula polysaccharide(CP) and sulfated CP[J]. Int Immunopharmacol, 2015, 24(2): 299-305.
[11]Chu X, Liu XJ, Qiu JM, et al. Inhibitory effects of codonopsis pilosula polysaccharides on the deterioration of impaired phagocytosis of alveolar macrophage induced by fine particulate matter in chronic obstructive pulmonary disease mice[J]. Zhonghua Yi Xue Za Zhi, 2016, 96(14): 1134-1138.  
[12]Chu X, Liu XJ, Qiu JM, et al. Effects of Astragalus and Codonopsis pilosula polysaccharides on alveolar macrophage phagocytosis and inflammation in chronic obstructive pulmonary disease mice exposed to PM2.5[J]. Environ Toxicol Pharmacol, 2016, 48(1): 76-84. 
[13]Zhang Q, Xia Y, Luo H, et al. Codonopsis pilosula polysaccharide attenuates tau hyperphosphorylation and cognitive impairments in htau infected mice[J]. Front Mol Neurosci, 2018, 11(1): 437.  
[14]Ma Q, Dasgupta C, Li Y, et al. Inhibition of microRNA-210 provides neuroprotection in hypoxic-ischemic brain injury in neonatal rats[J]. Neurobiol Dis, 2016, 89(1): 202-212. 
[15]Ma Q, Dasgupta C, Li Y, et al. MicroRNA-210 suppresses junction proteins and disrupts blood-brain barrier integrity in neonatal rat hypoxic-ischemic brain injury[J]. Int J Mol Sci, 2017, 18(7): E1356. 
[16]Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of aneurologic examination[J]. Stroke, 1986, 17(3): 472-476.
[17] Li ZW, Zheng XN, Li P, et al. Time-effect relationship of acupuncture on histopathology, ultrastructure, and neuroethology in the acute phase of cerebral hemorrhage[J]. Neural Regen Res, 2019, 14(1): 107-113. 
[18]Zhang Y, Yang X, Jin G, et al. Polysaccharides from Pleurotus ostreatus alleviate cognitive impairment in a ratmodel of Alzheimer's disease[J]. Int J Biol Macromol, 2016, 92(1): 935-941.
[19]Ho YS, Yu MS, Yang XF, et al. Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lyciumbarbarum, against homocysteine-induced toxicity in rat cortical neurons[J]. J Alzheimers Dis, 2010, 19(3): 813-827.
[20]Qin T, Ren Z, Liu X, et al. Study of the selenizing Codonopsis pilosula polysaccharides protects RAW264.7 cells from hydrogen peroxide-induced injury[J]. Int J Biol Macromol, 2019, 125(3): 534-543.
[21]Siuda J, Patalong-Ogiewa M, Żmuda W, et al. Cognitive impairment and BDNF serum levels[J]. Neurol Neurochir Pol, 2017, 51(1): 24-32. 
[22]Whitfield DR, Vallortigara J, Alghamdi A, et al. Assessment of ZnT3 and PSD95 protein levels in Lewy body dementias and Alzheimer's disease: association with cognitive impairment[J]. Neurobiol Aging, 2014, 35(12): 2836-2844. 
[23]Han XF, Zhang Y, Xiong LL, et al. Lentiviral-mediated netrin-1 overexpression improves motor and sensory functions in SCT rats associated with SYP and GAP-43 expressions[J]. Mol Neurobiol, 2017, 54(3): 1684-1697. 
[24] Yu R, Chen C, Mo YY, et al. Activation of mitogen-activated protein kinase pathways induces antioxidantresponse element-mediated gene expression via a Nrf2-dependent mechanism[J]. J Biol Chem, 2000, 275(51): 39907-39913.
[25] Paine A, Eiz-Vesper B, Blasczyk R, et al. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential[J]. Biochem Pharmacol, 2010, 80(12): 1895-1903. 
[26]Tong KI, Kobayashi A, Katsuoka F, et al. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism[J]. Biol Chem, 2006, 387(10-11): 1311-1320.
[27]Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway[J]. Annu Rev Pharmacol Toxicol, 2007, 47(1): 89-116.

Accesses

Citation

Detail

Sections
Recommended

/