Finite element analysis of the stress distribution in articular surface during flexion and extension of 2~5 metacarpophalangeal joint

KANG Yong-qiang, RUI Yong-jun

Chinese Journal of Clinical Anatomy ›› 2019, Vol. 37 ›› Issue (3) : 299-303.

Chinese Journal of Clinical Anatomy ›› 2019, Vol. 37 ›› Issue (3) : 299-303. DOI: 10.13418/j.issn.1001-165x.2019.03.012

Finite element analysis of the stress distribution in articular surface during flexion and extension of 2~5 metacarpophalangeal joint

  •  KANG Yong-qiang, RUI Yong-jun
Author information +
History +

Abstract

Objective To establish a three-dimensional finite element model of the metacarpophalangeal joint (MPJ), and analyze the stress distribution of the MPJ surface in the flexion and extension of the MPJ. Methods The hands of one healthy volunteer were examined. Three-dimensional CT scanning was performed at 30° intervals during passive flexion from 0° to 90° with use of a CT scanner. The CT scan data were used to establish the three-dimensional finite element model of the MPJ. The load distribution of the MPJ was observed by applying 10, 20, 30, 40 and 50 N loading along the radial direction of the phalanx at four angles, and the results were analyzed. Results The number of nodes and the number of units of the four sets of MPJ mesh models with different bending angles were basically the same. Each group of models has about a total of 40070 nodes and 178903 tetrahedral units. Under the same load, the greater the angle of bending, the greater the stress on the MPJ surface. During the angles of 0°, 30°, 60° and 90°, the peak stress range of the metacarpal head of 2~5 MPJs was respectively, 0.20~2.46, 0.22~1.58, 0.22~1.69, 0.22~2.25 MPa. Conclusion During the flexion and extension of the MPJ, the greater the angle of bending, the greater the contact stress of the MPJ surface, and the wider the range of stress distribution.

Key words

Metacarpophalangeal joint /   Biomechanics /   Finite element analysis /   Stress

Cite this article

Download Citations
KANG Yong-qiang, RUI Yong-jun. Finite element analysis of the stress distribution in articular surface during flexion and extension of 2~5 metacarpophalangeal joint[J]. Chinese Journal of Clinical Anatomy. 2019, 37(3): 299-303 https://doi.org/10.13418/j.issn.1001-165x.2019.03.012

References

[1]  张景僚, 顾立强, 张美超. 骨盆三维有限元模型的建立及意义[J]. 中华创伤骨科杂志, 2008, 10(1): 64-67.
[2]  任德新, 顾海伦, 李赫, 等. 股骨近端防旋髓内钉固定治疗累及外侧壁的股骨转子间骨折有限元分析[J]. 中华创伤骨科杂志, 2018, 20(4): 346-351.
[3]  童凯, 王钢. 骶髂关节复合体生物力学特征的研究进展[J]. 中华创伤骨科志, 2018, 20(3): 223-227.
[4]   颜冰珊, 尹望平, 聂文忠, 等. 正常下尺桡关节三维有限元模型的建立及验证[J]. 中国组织工程研究与临床康复, 2011, 15(17): 3135-3138.
[5]  汪金平, 杨天府, 钟凤林, 等. 股骨生物力学特性的有限元分析[J]. 中华创伤骨科杂志, 2005, 7(10): 931-934.
[6]  康永强, 芮永军, 吴永伟, 等. 2~5掌指关节有效关节接触面的数字化研究[J]. 中国临床解剖学杂志, 2018, 36(4): 375-379.
[7]  Rho JY, Tsui TY, Pharr GM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation[J]. Biomaterials, 1997, 18(20): 1325-1330.
[8]  Anderson DD, Daniel TE. A contact-coupled finite element analysis of the radiocarpal joint[J]. Semin Arthroplasty, 1995, 6(1): 30-36.
[9]  Ledoux P, Lamblin D, Targowski R. Modifications to the mechanical behavior of the wrist after fracture of the scaphoid. Modeling by finite element analysis[J]. Acta Orthop Belg, 2001, 67(3): 236-241.
[10] Lewis G, Vannappagari SR. Finite element stress analysis of the wrist jiont without and with an endoprosthesis[J]. Semin Arthroplasty, 1995, 6(1): 20-29.
[11]Oda M, Hashizume H, Miyake T, et al. A stress distribution analysis of a ceramic lunate replacement for Kienbock's disease[J]. J Hand Surg Br, 2000, 25(5): 492-498.
[12]Ledoux P, Lamblin D, Targowski R. Modifications to the mechanical behavior of the wrist after fracture of the scaphoid. Modeling by finite element analysis[J]. Acta Orthop Belg, 2001, 67(3): 236-241.
[13]苏秀云, 裴国献, 李鉴轶, 等. 中国数字人数据集三维重建的方法学研究[J]. 中国临床解剖学杂志, 2008, 26(2): 220-223.
[14]张绍祥. 我国数字医学的现状与未来[J]. 中国数字医学, 2011, 6(12): 8-11
[15]钟世镇. 我国数字医学发展史概要[J]. 中国数字医学, 2011, 6(12): 12-14
[16]汪光晔, 张春才, 许硕贵. 正常步态下髋臼底接触面积与压力分布的三维有限元分析[J]. 中国组织工程研究与临床康复, 2011, 15(22): 3991-3994.
[17]Zhu GD, Guo WS, Zhang QD, et al. Finite element analysis of mobile-bearing unicompartmental knee arthroplasty: the influence of tibial component coronal alignment[J]. Chin Med J(Engl), 2015, 128(21): 2873-2878.
[18]Goto A, Leng S, Sugamoto K, et al. In vivo pilot study evaluating the thumb carpometacarpal joint during circumduction[J]. Clin Orthop Relat Res, 2014, 472(4): 1106-1113.
[19]Kataoka T, Moritomo H, Miyake J, et al. Changes in shape and length of the collateral and accessory collateral ligaments of the metacarpophalangeal joint during flexion[J]. J Bone Joint Surg Am, 2011, 93(14): 1318-1325.

Accesses

Citation

Detail

Sections
Recommended

/