Intramuscular nerve distribution pattern in the pronator teres and flexor digitorum superficialis of children: provide anatomical positioning for the injection of BTX-A

XU Yan, YANG Fang-jiu, XIE Xia-dan, YANG Sheng-bo, LUO Huai-xiang, XIE Peng

Chinese Journal of Clinical Anatomy ›› 2017, Vol. 35 ›› Issue (5) : 481-484.

Chinese Journal of Clinical Anatomy ›› 2017, Vol. 35 ›› Issue (5) : 481-484. DOI: 10.13418/j.issn.1001-165x.2017.05.001

Intramuscular nerve distribution pattern in the pronator teres and flexor digitorum superficialis of children: provide anatomical positioning for the injection of BTX-A

  • XU Yan1, YANG Fang-jiu1, XIE Xia-dan2, YANG Sheng-bo1, LUO Huai-xiang3, XIE Peng1
Author information +
History +

Abstract

Objective To examine the distribution pattern of intramuscular terminal neurons in the pronator teres and flexor digitorum superficialis muscles in children in order to provide the appropriate anatomical positioning for BTX-A injection in the treatment of forelimb myospasms in children with cerebral palsy. Methods  The distribution pattern of intramuscular nerve branches within the pronator teres and flexor digitorum superficialis of children was observed by using the modified Sihler’s intramuscular nerve staining.  Results  Two nerve entry points (upper and lower) lead to the pronator teres. The lower nerve branch was wider and more extensively distributed. Its intramuscular branches were broom-like, and the adjacent nerve branch terminals had significant convergences of “O” and “Y” shapes. The intramuscular nerve terminal dense zones of this muscle lied in the middle of the muscle belly. The flexor digitorum superficialis had three nerve entry points, namely the upper, middle, and lower entry points. The intramuscular nerve terminal dense zones could be divided into the upper, middle, and lower parts, among which the middle part was the most concentrated. The “Y” and “O” convergences could be observed between the various terminal neurons. Conclusions  The intramuscular nerve terminal dense zones of the pronator teres and flexor digitorum superficialis are both located in the middle part of the muscle belly. Thus, when children with cerebral palsy experience myospasms at these two muscles, the middle part of the muscle belly should be chosen as the best target area for BTX-A injection in the treatment of myospasms.

Key words

Cerebral palsy;    / Pronation teres;   / Flexor digitorum superficialis;    / Intramuscular nerve;  / BTX-A

Cite this article

Download Citations
XU Yan, YANG Fang-jiu, XIE Xia-dan, YANG Sheng-bo, LUO Huai-xiang, XIE Peng. Intramuscular nerve distribution pattern in the pronator teres and flexor digitorum superficialis of children: provide anatomical positioning for the injection of BTX-A[J]. Chinese Journal of Clinical Anatomy. 2017, 35(5): 481-484 https://doi.org/10.13418/j.issn.1001-165x.2017.05.001

References

[1] Colovic H, Dimitrijevic L, Stankovic I, et al. Estimation of botulinum toxin type A efficacy on spasticity and functional outcome in children with spastic cerebral palsy[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2012,156(1):41-47. 
[2] Love SC, Novak I, Kentish M, et al. Botulinum toxin assessment, intervention and after-care for lower limb spasticity in children with cerebral palsy: international consensus statement[J]. Eur J Neurol, 2010,17(2):9-37.
[3] Delnooz CC, Veugen LC, Pasman JW, et al. The clinical utility of botulinum toxin injections targeted at the motor endplate zone in cervical dystonia[J]. Eur J Neurol, 2014,21(12): 1486-1498.
[4] Kinnett D. Botulinum toxin A injections in children: technique and dosing issues[J]. Am J Phys Med Rehabil, 2004,83(10):59-64.
[5] Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society, Delgado MR, Hirtz D, et al. Practice parameter: pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society[J]. Neurology, 2010, 74(4): 336-343.
[6] Copeland L, Edwards P, Thorley M, et al. Botulinum toxin A for nonambulatory children with cerebral palsy: a double blind randomized controlled trial[J]. J Pediatr, 2014, 165(1): 140-146.
[7] Hexsel D, Hexsel C, Siega C, et al. Fields of effects of 2 commercial preparations of botulinum toxin type A at equal labeled unit doses: a doubleblind randomized trial[J]. JAMA Dermatol, 2013, 149(12): 1386-1391.
[8] Van Campenhout A, Bar-On L, Desloovere K, et al. Role of motor end plate-targeted Botulinum toxin type A injections in children with cerebral palsyitle[J], Acta Orthop Belg, 2015, 81(2):167-171.
[9] Amirali A, Mu L, Gracies JM, et al. Anatomical localization of motor endplate bands in the human biceps brachii[J]. Clin Neuromuscul Dis, 2007, 9(2): 306-312.
[10]Fitoussi F, Diop A, Maurel N, et al. Upper limb motion analysis in children with hemiplegic cerebral palsy: proximal kinematic changes after distal botulinum toxin or surgical treatments[J]. Child Orthop, 2011, 5(5):363-370.
[11]?obelji? G, Rajkovi? S, Bajin Z, et al. The results of surgical treatment for pronation deformities of the forearm in cerebral palsy after a mean follow-up of 17.5 years[J]. Orthop Surg Res, 2015, 8(10):106.
[12]杨方玖,周运栏,薛黔. 正中神经前臂分支与旋前圆肌的关系以及旋前圆肌肌内神经分布研究[J]. 实用医学杂志,2010, 26(1):12-14.
[13]杨方玖, 薛黔,周运栏,张永. 指浅屈肌的形态、神经入肌点与肌内神经分布及其临床意义[J]. 实用医学杂志,2010, 26(21):3856-3858.
[14]Ye JF, Lee JH, An XC, et al. Anatomic localization of motor entry points and accurate regions for botulinum toxin injection in theflexor digitorum superficialis[J]. Surg Radiol Anat, 2011, 33(7):601-607.
[15]Stone AV, Ma J, Callahan MF et al. Dose- and volume dependent-response to intramuscular injection of botulinum neurotoxin-A optimizes muscle force decrement in mice[J]. J Orthop Res, 2011, 29(11):1764-1770.
[16]Intiso D, Basciani M. Botulinum toxin use in neuro-rehabilitation to treat obstetrical plexus palsy and sialorrhea following neurological diseases: a review[J]. Neuro Rehabilitation, 2012, 31(2):117-129.
[17]Park ES, Rha DW. Botulinum toxin type A injection for management of upper limb spasticity in children with cerebral palsy: a literature review[J]. Yonsei Med J, 2006, 47(5):589-603.
[18]Won SY, Rha DW, Kim HS et al. Intramuscular nerve distribution pattern of the adductor longus and gracilis muscles demonstrated with Sihler staining: guidance for botulinum toxin injection[J]. Muscle Nerve, 2012, 46(1):80-85.
[19]Yang F, Zhang X, Xie X, et al. Intramuscular nerve distribution patterns of anterior forearm muscles in children: a guide for botulinum toxin injection[J]. Am J Transl Res, 2016, 8(12):5485-5493.
[20]Xie P, Jiang Y, Zhang X, et al. The study of intramuscular nerve distribution patterns and relative spindle abundance of the thenar and hypothenar muscles in human hand[J]. PLoS One, 2012, 7(12): e51538.
[21]Xie P, Qin B, Yang F, et al. Lidocaine Injection in the Intramuscular Innervation Zone Can Effectively Treat Chronic Neck Pain Caused by MTrPs in the Trapezius Muscle[J]. Pain Physician, 2015, 18(10): 815-826.
[22]Van Campenhout A, Molenaers G. Localization of the motor endplate zone in human skeletal muscles of the lower limb: anatomical guidelines for injection with botulinum toxin[J]. Dev Med Child Neurol, 2011, 53(2):108-119.
[23]Won SY, Hur MS, Rha DW et al. Extra- and intramuscular nerve distribution patterns of the muscles of the ventral compartment of the forearm[J]. Am J Phys Med Rehabil, 2010, 89(8):644-652.
[24]Crystal R, Malone AA, Eastwood DM. Motor points for neuromuscular blockade of the adductor muscle group[J]. Clin Orthop Relat Res, 2005, (437):196-200.

Accesses

Citation

Detail

Sections
Recommended

/