Effect of the lateral pterygoid muscle on the anterior disc displacement with reduction of temporomandibular joint under different occlusal position
YIN Xue-min, ZHANG Yan, LI Zi-wen, LIU Xiao, SONG Meng-yang, WANG Fang-yuan, LIU Xiao-hao
Chinese Journal of Clinical Anatomy ›› 2017, Vol. 35 ›› Issue (4) : 419-424.
Effect of the lateral pterygoid muscle on the anterior disc displacement with reduction of temporomandibular joint under different occlusal position
Objective To analyze the effect of lateral pterygoid muscle on anterior disc displacement with reduction of temporomandibular joint (TMJ) under different occlusal position. Methods Lateral pterygoid muscle was loaded under different occlusal position to simulate and biomechanically analyze the TMJ anterior disc displacement with reduction by using the established digital simulation model. Results Under the maximum jaw opening status, the disc region with the highest stress concentration occurred in the lateral part of the intermediate zone; the tendency of displacement appeared between the intermediate zone and the posterior band to form a tearing region. Under the intercuspal position, the disc region with the highest stress concentration occurred in the posteroir band and there was not a tearing region between the intermediate zone and the poster band. Conclusions The results indicate that the function of the lateral pterygoid muscles can lead to the stress concentration on intermediate zone of the articular disc under the maximum jaw opening status, resulting in a tearing region in the articular disc.
Temporomandibular joint disc / Lateral pterygoid muscle / Anterior discdisplacement with reduction / Biomechanics
[1] Abe S, Kawano F, Kohge K, et al. Stress analysis in human temporomandibular joint affected by anterior disc displacement during prolonged clenching[J]. J Oral Rehabil, 2013, 40(4):239-246.
[2] Sun M, Yang J, Zhou R, et al. Mechanical analysis on individualized finite element of temporal-mandibular joint under overlarge jaw opening status[J]. Int J Clin Exp Med, 2015, 8(6): 9046-9054.
[3] Commisso MS, Martínez-Reina J, Ojeda J, et al. Finite element analysis of the human mastication cycle [J]. J Mech Behav Biomed Mater, 2015,8(41):23-35.
[4] 殷学民,刘啸,张君伟,等. 关节盘前移位颞下颌关节仿真模型的建立[J]. 口腔颌面外科杂志, 2013, 23(5): 336-340.
[5] 刘梦超, 吴信雷, 林崇翔,等. 颞下颌关节骨骼肌肉系统三维有限元模型的构建[J].医用生物力学,2015, 30(2):118-124.
[6] 马绪臣,张震康.颞下颌关节紊乱病的命名、诊断分类及治疗原则[J]. 中华口腔医学杂志, 2002, 37(4):241-243.
[7] 殷学民, 李子文, 刘啸, 等. 翼外肌对可复性颞下颌关节盘前移位的作用机制[J]. 中国口腔颌面外科杂志,2015,13(01):7-10.
[8] Koolstra JH, van Eijden TM. Combined finite-element and rigid-body analysis of human jaw joint dynamics [J]. J Biomech, 2005, 38(12): 2431-2439.
[9] Tanaka E, Rodrigo DP, Tanaka M, et al. Stress analysis in the TMJ during jaw opening by use of a three-dimensional finite element model based on magnetic resonance images[J]. Int J Oral Maxillofac Surg, 2001, 30(5):421-430.
[10]郭维鹏,李亚兰,唐志雄, 等. 包含颞下颌关节的下颌骨有限元建模[J]. 生物医学工程研究, 2013, 32(03):162-166.
[11]Emshoff R, Rudisch A, Innerhofer K, et al. Magnetic resonance imaging findings of internal derangement in temporomandibular joints without a clinical diagnosis of temporomandibular disorder [J]. J Oral Rehabil, 2002, 29(6):516-522.
[12]Cai XY, Jin JM, Yang C. Changes in disc position, disc length, and condylar height in the temporomandibular joint with anterior disc displacement: a longitudinal retrospective magnetic resonance imaging study. [J]. J Oral Maxillofac Surg, 2011,69(11): e340-e346.
[13]Razek AA, Al Mahdy Al Belasy F, Ahmed WM, et al. Assessment of articular disc displacement of temporomandibular joint with ultrasound[J]. J Ultrasound, 2014, 18(2): 159-163.
[14]Dias IM, Coelho PR, Assis NM, et al. Evaluation of the correlation between disc displacements and degenerative bone changes of the temporomandibular joint by means of magnetic resonance images [J]. Int J Oral Maxillofac Surg, 2012, 41(9): 1051-1057.
[15] Clement C, Bravetti P, Plenat F, et al. Quantitative analysis of the elastic fibres in the human temporomandibular articular disc and its attachments [J]. Int J Oral Maxillofac Surg, 2006, 35(12): 1120-1126.
[16]Lee JY, Kim DJ, Lee SG, et al. A longitudinal study on the osteoarthritic change of the temporomandibular joint based on 1-year follow-up computed tomography [J]. J Craniomaxillofac Surg, 2012, 40(8): e223-e228.
[17]Koolstra J H, van Eijden T M. Combined finite-element and rigid-body analysis of human jaw joint dynamics[J]. J Biomech, 2005,38(12):2431-2439.
[18] Pérez Del Palomar A, Doblaré M. The effect of collagen reinforcement in the behaviour of the temporomandibular joint disc[J]. J Biomech, 2006, 39(6):1075-1085.
[19]Tanaka E, Hirose M, Inubushi T, et al. Effect of hyperactivity of the lateral pterygoid muscle on the temporomandibular joint disk[J]. J Biomech Eng, 2007,129(6):890-897.
[20] Koolstra JH, Tanaka E. Tensile stress patterns predicted in the articular disc of the human temporomandibular joint[J]. J Anat, 2009,215(4):411-416.
[21]Juran CM, Dolwick MF, Mcfetridge PS. Shear mechanics of the TMJ disc: relationship to common clinical observations[J]. J Dent Res, 2013,92(2):193-198.
[22]Abe S, Kawano F, Kohge K, et al. Stress analysis in human temporomandibular joint affected by anterior disc displacement during prolonged clenching[J]. J Oral Rehabil, 2013,40(4):239-246.
[23]Aoun M, Mesnard M, Monède-Hocquard L, et al. Stress analysis of temporomandibular joint disc during maintained clenching using a viscohyperelastic finite element model [J]. J Oral Maxillofac Surg, 2014,72(6):1070-1077.
[24]龙星, 李金荣, 汪传铎, 等. 颞下颌关节盘前移位和穿孔的关节内窥镜研究[J]. 口腔医学纵横,1999, 15(4):222-224.
[25] Tanaka E, Yamano E, Dalla-Bona DA, et al. Dynamic compressive properties of the mandibular condylar cartilage[J]. J Dent Res, 2006, 85(6):571-575.
[26]Pérez Del Palomar A, Doblaré M. Finite element analysis of the temporomandibular joint during lateral excursions of the mandible[J]. J Biomech, 2006,39(12):2153-2163.
/
〈 |
|
〉 |