The biomechanical effect of transforaminal lumbar interbody fusion with different types of posterior instruments for stabilization

YU Wei-bo,LIANG De, YE Lin-qiang,HUANG Xue-cheng,YAO Zhen-song, JIANG Xiao-bing

Chinese Journal of Clinical Anatomy ›› 2016, Vol. 34 ›› Issue (5) : 551-556.

Chinese Journal of Clinical Anatomy ›› 2016, Vol. 34 ›› Issue (5) : 551-556. DOI: 10.13418/j.issn.1001-165x.2016.05.015

The biomechanical effect of transforaminal lumbar interbody fusion with different types of posterior instruments for stabilization

  • YU Wei-bo 1,2,  LIANG De 1,  YE Lin-qiang 1,2, HUANG Xue-cheng 1,2,  YAO Zhen-song 2,  JIANG Xiao-bing 2
Author information +
History +

Abstract

Objective To investigate the biomechanical effect of transforaminal lumbar interbody fusion (TLIF) with three different types of posterior instruments. Methods A validated L3~5 FE model was modified to simulate three different TLIF finite element modelsat L4~5: unilateral pediclescrew fixation;bilateral pedicle screw fixation; a unilateral pedicle screw fixation supplemented with contralateral facet screw construct. Various biomechanical parameters were evaluated for intact and implanted models in all loading planes. Results When compared with the intact model, all reconstructive models displayed decreased motion at L4~5, and Model B conferred greater stability in flexion-extension (18.2% of intact model). The maximum stress of instruments was found in Model C with 234.9 MPa under left lateral bending. In addition, Model B generated the lowest cage stress. Conclusion The reconstruction with bilateral pedicle screw fixation can gain the optimal stability and decrease posterior instrumentation stress. A unilateral pedicle screw fixation supplemented with contralateral facet screw construct could also gain a relatively good stability.

Key words

Transforaminal lumbar interbody fusion / Pedicle screw fixation / Contralateral facet screw construct / Finite element analysis

Cite this article

Download Citations
YU Wei-bo,LIANG De, YE Lin-qiang,HUANG Xue-cheng,YAO Zhen-song, JIANG Xiao-bing. The biomechanical effect of transforaminal lumbar interbody fusion with different types of posterior instruments for stabilization[J]. Chinese Journal of Clinical Anatomy. 2016, 34(5): 551-556 https://doi.org/10.13418/j.issn.1001-165x.2016.05.015

References

[1]  Lowe TG, Tahernia AD, O’Brien MF, et al. Unilateral transforaminal posterior lumbar interbody fusion (TLIF): indications, technique, and 2-year results[J]. J Spinal Disord Tech, 2002, 15(1):31-38.
[2]  Li X, Lv C, Yan T. Unilateral versus bilateral pedicle screw fixation for degenerative lumbar diseases: a meta-analysis of 10 randomized controlled trials[J]. Med Sci Monit, 2015, 21(2):782-790.
[3] Zhang K, Sun W, Zhao CQ, et al. Unilateral versus bilateral instrumented transforaminal lumbar interbody fusion in two-level degenerative lumbar disorders: a prospective randomised study[J]. Int Orthop, 2014(1), 38:111-116.
[4] Bachus K, Brodke D, Droge J. Increasing the stability of unilateral transverse lumbar interbody fusions[J]. Proc Orthop Res Soc, 2004, 29(7):1122.
[5] Slucky A, Brodke D, Droge J. In vivo biomechanical analysis of transverse lumbar fusion techniques[C]. Presented at World Spine Conference II, Chicago, IL, 2003.
[6] Ambati DV, Wright EK, Lehman RA, et al. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study[J]. Spine J, 2015, 15(8):1812-1822.
[7]  Vadapalli S, Sairyo K, Goel VK, et al. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study[J]. Spine (Phila Pa 1976), 2006, 31(26):E992-998.
[8]  李苏皖, 陆斌, 张国桥, 等. 腰椎后路椎间融合内固定有限元模型的建立及内固定物力学分析[J]. 中国临床解剖学杂志, 2014, 32(5): 609-612.
[9] Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint [J]. Spine (Phila Pa 1976), 1989, 14(11):1256-1260.
[10]Chiang MF, Zhong ZC, Chen CS, et al. Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis[J]. Spine (Phila Pa 1976), 2006, 31(19):E682-689.
[11]Dmitriev AE, Gill NW, Kuklo TR, et al. Effect of multilevel lumbar disc arthroplasty on the operative- and adjacent-level kinematics and intradiscal pressures: an in vitro human cadaveric assessment[J]. Spine J, 2008, 8(6):918-925.
[12]Ambati DV, Wright EK, Lehman RA, et al. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study[J]. Spine J, 2015, 15(1):1812-1822.
[13]Harris BM, Hilibrand AS, Savas PE, et al. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine[J]. Spine, 2004, 29(4):E65–70.
[14]Horn EM, Reyes PM, Baek S, et al. Biomechanics of C-7 transfacet screw fixation[J]. J Neurosurg Spine, 2009, 11(3):338–343.
[15]Kuslich SD, Danielson G, Dowdle JD, et al. Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage[J]. Spine (Phila Pa 1976), 2000, 25(20):2656-2662.
[16]Chen CS, Feng CK, Cheng CK, et al. Biomechanical analysis of the disc adjacent to posterolateral fusion with laminectomy in lumbar spine[J]. J Spinal Disord Tech, 2005, 18(1):58-65.

Accesses

Citation

Detail

Sections
Recommended

/