Biomechanical analysis of a new type of artificial temporomandibular joint
YAN Hua-Min, FU Cheng, LIU Xiong, ZHANG Jun-Wei, LI Zi-Wen
Chinese Journal of Clinical Anatomy ›› 2014, Vol. 32 ›› Issue (1) : 72-75.
Biomechanical analysis of a new type of artificial temporomandibular joint
Objective Mandibular condylar defects in the finite element model is established to study the new artificial temporomandibular joints stress distribution and displacement of the change. Methods Mimics, Geomagic, Solidworks, ANSYS software were used to establish complete denture mandibular condylar defects on the right side of the finite element model and analyze the new TMJ condylar prosthesis in simulation of the bite force load of mandibular condylar prosthesis and hard tissue stress distribution and displacement. Results The whole Mandibular equivalent stress values were smaller than 20 Mpa, the maximum deformation value was smaller that 0.05 mm. Conclusions New artificial temporomandibular joints can avoid prosthesis fracture and bone absorption caused by excessive stress , and has a good biomechanical properties.
New type / Artificial temporomandibular joint / Biomechanics
[1] Westermark A, Koppel D, Leiggener C. Condylar replacement alone is not sufficient for prosthetic reconstruction of the temporomandibular joint
[J]. Int J Oral Maxillofac Surg, 2006,35(6):488-492.
[2] Mishima K, Yamada T, Sugahara T. Evaluation of respiratory status and mandibular movement after total temporomandibular joint replacement in patients with rheumatoid arthritis
[J]. Int J Oral Maxillofac Surg, 2003,32(3):275-279.
[3] Driemel O, Braun S, Muller-Richter UD, et al. Historical development of alloplastic temporomandibular joint replacement after 1945 and state of the art
[J]. Int J Oral Maxillofac Surg, 2009,38(9):909-920.
[4] Tanaka E, Tanaka M, Watanabe M, et al. Influences of occlusal and skeletal discrepancies on biomechanical environment in the TMJ during maximum clenching: an analytic approach with the finite element method
[J]. J Oral Rehabil, 2001,28(9):888-894.
[5] Perez D P A, Doblare M. Finite element analysis of the temporomandi bular joint during lateral excursions of the mandible
[J]. J Biomech, 2006,39(12):2153-2163.
[6] 殷学民, 李燕, 张美超, 等. 含完整牙列下颌骨生物力学模型的建立
[J]. 中国口腔颌面外科杂志,2011,9(3):195-197.
[7] Potter E. Treatment of mandibular angle fractures with a mellea-able noncompression miniplate
[J]. J Oral Maxillofac Surg, 1999,57(4):288-301.
[8] 宫大连, 李宁毅, 刘云涛,等. 成人下颌升支应用解剖的研究
[J]. 中华口腔医学杂志, 2004,39(6):513-515.
[9] Tada S, Stegaroiu R, Kitamura E, et al. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis
[J]. Int J Oral Maxillofac Implants, 2003,18(3):357-368.
[10] Hsu JT, Chang CH, Huang HL, et al. The number of screws, bone quality, and friction coefficient affect acetabular cup stability
[J]. Med Eng Phys, 2007,29(10):1089-1095.
[11] Oguz Y, Uckan S, Ozden AU, et al. Stability of locking and conventional 2.0-mm miniplate/screw systems after sagittal split ramus osteotomy: finite element analysis
[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009,108(2):174-177.
[12]Hsu JT, Huang HL, Tsai MT, et al. Effect of screw fixation on temporomandibular joint condylar prosthesis
[J]. J Oral Maxillofac Surg, 2011,69(5):1320-1328.
[13]张益, 张震康, 马绪臣. 三维可调式髁突假体置换的实验研究
[J]. 中华口腔医学杂志, 1999,(2):88.
[14]Kashi A, Chowdhury AR, Saha S. Finite element analysis of a TMJ implant
[J]. J Dent Res, 2010,89(3):241-245.
[15]Ramos A, Completo A, Relvas C, et al. Straight, semi-anatomic and anatomic TMJ implants: the influence of condylar geometry and bone fixation screws
[J]. J Craniomaxillofac Surg, 2011,39(5):343-350.
[16]Hsu JT, Lai KA, Chen Q, et al. The relation between micromotion and screw fixation in acetabular cup
[J]. Comput Methods Programs Biomed, 2006,84(1):34-41.
[17]Bonnet AS, Postaire M, Lipinski P. Biomechanical study of mandible bone supporting a four-implant retained bridge: finite element analysis of the influence of bone anisotropy and foodstuff position
[J]. Med Eng Phys, 2009,31(7):806-815.
[18]Haug RH, Fattahi TT, Goltz M. A biomechanical evaluation of mandibular angle fracture plating techniques
[J]. J Oral Maxillofac Surg, 2001,59(10):1199-1210.
/
〈 |
|
〉 |